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Abstract: We discuss in detail the problem of counting BPS gauge invariant operators

in the chiral ring of quiver gauge theories living on D-branes probing generic toric CY

singularities. The computation of generating functions that include counting of baryonic

operators is based on a relation between the baryonic charges in field theory and the

Kähler moduli of the CY singularities. A study of the interplay between gauge theory

and geometry shows that given geometrical sectors appear more than once in the field

theory, leading to a notion of “multiplicities”. We explain in detail how to decompose the

generating function for one D-brane into different sectors and how to compute their relevant

multiplicities by introducing geometric and anomalous baryonic charges. The Plethystic

Exponential remains a major tool for passing from one D-brane to arbitrary number N of

D-branes. Explicit formulae are given for few examples, including C
3/Z3, F0, and dP1.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep112007092/jhep112007092.pdf

mailto:agostino.butti@lpt.ens.fr
mailto:forcella@sissa.it
mailto:ahanany@perimeterinstitute.ca
mailto:dvegh@mit.edu
mailto:alberto.zaffaroni@mib.infn.it
http://jhep.sissa.it/stdsearch


J
H
E
P
1
1
(
2
0
0
7
)
0
9
2

Contents

1. Introduction 2

2. General structure of generating functions for BPS operators 3

3. Review of the conifold example 7

4. Expanding the N = 1 generating function 9

4.1 Expanding in a complete set of baryonic charges 11

4.2 Supersymmetric D3-branes and the GKZ decomposition 12

4.2.1 The GKZ decomposition 13

4.2.2 GKZ and field theory content 15

4.2.3 Computing g1,P for one D brane in a sector P using localization 16

4.2.4 Checks with all charges: GKZ approach vs. field theory 18

5. Examples 19

5.1 The conifold revisited 19

5.1.1 Conifold-GKZ decomposition 20

5.1.2 Conifold-multiplicities in the GKZ decomposition 21

5.2 Generating functions for C
3/Z3 22

5.2.1 The N = 1 generating function 23

5.2.2 The GKZ decomposition 24

5.2.3 Multiplicities 25

5.2.4 Refining the GKZ decomposition 26

5.2.5 Generating functions for N > 1 28

5.3 Generating functions for F0 29

5.3.1 The N = 1 generating function 30

5.3.2 The GKZ decomposition. 31

5.3.3 Multiplicities 32

5.3.4 Refining the GKZ decomposition 33

5.3.5 Expansion in baryonic charges 34

5.3.6 Generating functions for N > 1 35

5.4 Counting in 1
2F0 and in 3

4F0 36

5.5 Generating functions for del Pezzo 1 37

5.5.1 The N = 1 generating function 37

5.5.2 The GKZ decomposition. 39

5.5.3 Multiplicities 39

5.5.4 Refinement of the GKZ Lattice 40

5.5.5 Generating functions for N > 1 43

– 1 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
2

6. The Molien formula: checks for N > 1 44

6.1 Example: N = 2 for the conifold 46

6.2 Example: N = 1 and N = 2 for 3
4F0 - reducibility of the moduli space 47

7. Conclusions 48

A. Singular N = 2 horizons 49

A.1 C
2/Z2 50

A.1.1 C
2/Z2 as sum over Young tableaux 50

A.1.2 An expression for gN for C
2/Z2 51

A.2 C
2/Z3 53

A.3 C
2/Zn 55

B. A look at the shiver 56

B.1 Anomalous charges of C
3/Z3 57

B.2 Anomalous charges of F0 58

B.3 Anomalous charges of dP1 58

C. List of notations 58

1. Introduction

Recently, there has been growing interest in “counting” chiral BPS operators in field the-

ories which arise on the world-volume of branes probing Calabi-Yau singularities [1 – 18].

Determining the matter content and the interactions of these field theories is an interesting

and nontrivial question in itself. The study of this problem began with orbifolds [19 – 22]

and much progress has been made in understanding toric singularities as well [23 – 29]. In

the toric case brane tilings, a generalization of the brane boxes [30 – 32], allow for a great

simplification of the problem by providing a very geometric viewpoint [33 – 41].

The chiral BPS operators in question are dual to D3-branes wrapped on generically

nontrivial three-cycles on the gravity side [42]. Branes on trivial cycles are termed (dual)

giant gravitons [43 – 45] and are dual to mesonic operators while branes on nontrivial cycles

are dual to baryonic operators [42, 46, 47]. There is a relation between giant gravitons or

baryons and holomorphic curves in the Calabi-Yau which was first discussed in [48, 49]. As

a consequence, combinatorial data of BPS operators can be packed into generating func-

tions for holomorphic curves [9, 50], which contain ample information about the geometry

of the singularity.

This paper is devoted to the study of the (baryonic and mesonic) generating function

for the chiral ring in quiver gauge theories. Extending the results of [12], we compute the

generating functions including baryonic degrees of freedom for various theories. We first

study in detail the generating function for one D-brane and we decompose it into sectors
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with definite baryonic charges. This decomposition is closely related to the geometry and

to the generating functions for holomorphic curves obtained by localization in the Calabi-

Yau manifold. We conjecture that the generating function for a number N of D-branes is

completely determined by the generating function for a single D-brane and it is obtained

by applying the plethystic exponential to each sector [6, 9 – 12]. This conjecture, which can

be proved in the case of mesonic operators, is inspired by the geometrical quantization of

the classical D3-brane configurations in the gravitational dual. We explicitly compute the

generating functions for a selected set of singularities, including C
3/Z3, F0 and dP1, and

we make various checks in the dual field theory.

In [12] we studied the simpler and elegant cases of the conifold and the C
2/Z2 orbifold.

A new feature, which arises for more involved singularities, like for example C
3/Z3, F0 and

dP1, is the existence of multiplicities, namely the fact that geometrical sectors appear more

than once in field theory. As we go over these examples in detail, we find that multiplicities

have a geometrical interpretation and can be resolved, with a construction that ties together

in a fascinating way the algebraic geometry of the CY and the combinatorics of quiver data.

The paper is organized as follows. In section 2, we discuss the basics of generating

functions and plethystics. In section 3, we apply these tools and give a brief review of

the conifold example. Section 4 continues with the detailed discussion of the partition

functions from both the field theory and the geometry perspectives. The GKZ decomposi-

tion is introduced and the auxiliary GKZ partition function is defined. Section 5 contains

detailed examples, based on C
3/Z3, F0 and dP1, and explicitly computes generating func-

tions both for N = 1 and for small N > 1. Section 6 deals with N > 1 D-branes and gives

a systematic approach to the field theory computation by means of the Molien formula.

Appendices A and B contain some preliminary discussion and observations about singular

horizons and a discussion of the anomalous baryonic charges from the viewpoint of the

dual shiver construction.

Finally, a useful list of notations is reported in appendix C.

2. General structure of generating functions for BPS operators

In this section we will give general prescriptions on the computation of generating functions

for BPS operators in the chiral ring of a supersymmetric gauge theory that lives on a D-

brane which probes a generic non-compact Calabi-Yau manifold. The simpler cases of the

conifold and the C
2/Z2 orbifold were discussed in detail in [12].

Given an N = 1 supersymmetric gauge theory with a collection of U(1) global symme-

tries,
∏r

i=1 U(1)i, we have a set of r chemical potentials {ti}
r
i=1. The generating function

for a gauge theory living on a D-brane probing a generic non-compact CY manifold de-

pends on the set of parameters, ti. There is always at least one such U(1) global symmetry

and one such chemical potential t, corresponding to the U(1)R symmetry.

The global charges are divided into classes: baryonic charges, and flavor charges (by

abuse of language, we will include the R-symmetry in this latter class). The number of

non-anomalous flavor symmetries, related to the isometries of the CY, is less than three

while the number of non-anomalous baryonic symmetries, related to the group of divisors in
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the CY, can be quite large. In certain cases, we can also have baryonic discrete symmetries.

As is demonstrated below, in addition to the non-anomalous baryonic charges we need to

consider the anomalous baryonic charges. We will only consider the case of toric CY where

the number of flavor symmetries is three. When it will be necessary to make distinctions,

we will denote with x, y or qi the flavor chemical potentials and with bi the non-anomalous

baryonic chemical potentials. Chemical potentials for anomalous charges are denoted by ai.

For a given CY manifold, we denote the generating function for N D-branes by

gN ({ti}; CY ). The generating function for N = 1 is simple to compute by using field

theory arguments. Recall that the quiver gauge theory living on the world-volume of the

D3-branes, which can be determined in the toric case using dimer technology [33, 34],1

consists of a gauge group SU(N)G, adjoint or bi-fundamental chiral fields2 XJ , which can

be considered as N × N matrices, and a superpotential W (XJ).

For N = 1 the matrices XJ reduce to numbers and the F-term conditions become

polynomial equations in the commuting numbers XJ . We can consider the polynomial

ring C[XJ ] to be graded by the weights ti. Since the gauge group is acting trivially for

N = 1, the ring of gauge invariants is just the quotient ring

Rinv
N=1 = C[XJ ]/I

where I is the set of F-term constraints dW (XJ)/dXJ . The generating function for poly-

nomial rings is called Hilbert series in the mathematical literature and can be computed in

an algorithmic way. In particular, computer algebra programs, like Macaulay2 [66], have

built-in commands to compute these generating functions. We can therefore assume that

the generating function g1({ti}) for Rinv
N=1 is known.

We proceed to the determination of gN with a general conjecture:

• For the class of theories considered here (D-branes probing non-compact CY which

are any of toric, orbifolds or complete intersections), the knowledge of the generating

function for N = 1 is enough to compute the generating function for any N .

This is a familiar fact for mesonic generating functions [6], and it is essentially due to

the fact that the operators for finite N are symmetric functions of the operators for N = 1.

This is also familiar for baryonic generating functions, where the knowledge of a single gen-

erating function, g1,B , for one D-brane, N = 1 and baryon number B, is enough to compute

all generating functions for any number of D-branes and for a fixed baryonic number [9].

The general construction is as follows. There exists a decomposition of the N = 1 ring

of invariants Rinv
N=1, and consequently of its generating function, into sectors S of definite

baryonic charges

g1({ti};CY ) =
∑

S

g1,S({ti};CY ) (2.1)

1See [36 – 41, 51 – 65] for a rich set of subsequent developments.
2Henceforth we denote fields by bold characters to distinguish them from global quantum numbers.
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where g1,S is the generating function for the subsector S ⊂ Rinv
N=1. All elements in S have

the same baryonic charges, and, except for a multiplicative factor, g1,S only depends on

the flavor charges qi. In simple cases, like the conifold, S is just a label running over all the

possible values of the non-anomalous baryonic charge. The understanding of the precise

decomposition of Rinv
N=1 into subsectors in the general case is a nontrivial task and is one

of the subjects of this paper.

The generating function for N branes is then obtained by taking N -fold symmetric

products of elements in each given sector S. This is precisely the role which is played by

the Plethystic Exponential (PE) — to take a generating function for a set of operators and

count all possible symmetric functions of it. If we introduce a chemical potential ν for the

number of D-branes, the generating function for any number of D-branes is given by

g(ν; {ti};CY ) =
∑

S

PEν [g1,S({ti};CY )] ≡
∑

S

exp

( ∞
∑

k=1

νk

k
g1,S({tki };CY )

)

≡
∞
∑

N=0

gN ({ti};CY )νN (2.2)

The detailed description of the decomposition into sectors S is given in the rest of this

paper, but it is important to notice from the very beginning that such a decomposition

is not unique. As already mentioned above, gauge invariants in the same sector have the

same baryonic charges. One can take these baryonic charges to be non-anomalous. This

however, turns out to be not enough and we seem to need a finer decomposition of the ring

of invariants which is obtained by enlarging the set of non-anomalous baryonic charges to

a larger set. There are two basic extensions, one related to an expansion in a full set of

baryonic charges, anomalous and non-anomalous, and the other extension is related to a full

set of discretized Kähler moduli on the CY resolutions. We thus have two complementary

points of view:

• Quantum field theory perspective: the most general decomposition of the gen-

erating function g1({ti}) is into the full set of baryonic charges. Let us extend the

set of chemical potentials ti to all the baryonic charges, including the anomalous

ones, denoted by ai. There are G − 1 independent baryonic charges, where G is the

number of gauge groups. We can thus decompose Rinv
N=1 into sectors with definite

charges under U(1)G−1. g1({ti}) will decompose into a formal Laurent series in the

baryonic chemical potentials bi and ai. The Rinv
N rings of invariants for number of

colors N will similarly decompose into sectors of definite baryonic charge. We can

formally extend the gauge group SU(N)G to U(N)G/U(1) by gauging the baryonic

symmetries.3 From this perspective, the decomposition of the ring of SU(N)G invari-

ants into Abelian representations of the extended group U(N)G/U(1) is sometimes

called an expansion in covariants and is extremely natural from the point of view of

invariant theory. All sectors S appear with multiplicity one in the decomposition of

equation (2.2).

3The theory will of course be anomalous. The overall U(1) is discarded since it acts trivially.
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• The dual geometrical perspective: the full set of BPS states of the dual gauge

theory can be obtained by quantizing the classical configuration space of super-

symmetric D3-branes wrapped on the horizon. This problem can be equivalently

rephrased in terms of holomorphic surfaces in the CY with g1 as generating func-

tion [48, 49]. Quite remarkably, g1 has a decomposition

g1({ti};CY ) =
∑

S

m(S) g1,S({ti};CY ), (2.3)

where the parameters S can be identified with a complete set of discretized Kähler

moduli and the integers m(S) are multiplicities. We will call it the GKZ decomposi-

tion, from the known description of the Kähler cone in terms of a secondary fan given

by the GKZ construction (for a useful reference see [67]). The functions g1,S can be

explicitly determined with the computation of a character using the equivariant in-

dex theorem. This geometrical decomposition has multiplicities m(S) which will be

interpreted in the following sections and discussed in detail in section 4. The result

for finite N is generated by the following function

g(ν; {ti};CY ) =
∑

S

m(S)PEν [g1,S({ti};CY )], (2.4)

and can be interpreted as the result of quantizing the classical BPS D3-brane config-

uration in each sector S.

The two decompositions of the N = 1 generating function are different and comple-

mentary. For a toric CY manifold that has a toric diagram with d external vertices and I

internal integral points, the number of non-anomalous baryonic symmetries is d − 3, the

number of anomalous baryonic symmetries is 2I and the dimension of the Kähler moduli

space is d− 3 + I. The field theory expansion is thus based on a lattice Γ(b,a) of dimension

d − 3 + 2I consisting of all baryonic charges, anomalous or not, while the geometrical ex-

pansion is based on a lattice ΓGKZ of dimension d − 3 + I. The two sets have a nontrivial

intersection Γb, consisting of non-anomalous baryonic charges.

At the end, we will be interested in the generating function for BPS operators with

chemical potential with respect to the non-anomalous charges. To this purpose, we must

project any of the two lattices on their intersection, which is the d − 3 lattice of non-

anomalous baryonic symmetries Γb

g1({ti}) =
∑

k∈Γb

m(k) g1,k({ti})

and multiplicities will generically appear.

On the other hand, we could even imagine to enlarge our lattices. Adding the anoma-

lous baryonic charges to the GKZ fan we obtain a lattice of dimension d − 3 + 3I. The

points give hollow polygons over the GKZ fan. All these issues will be discussed in detail

in the rest of the paper.

– 6 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
2

21

(0,0,1) (1,0,1)

(0,1,1) (1,1,1)
A

B

Figure 1: Quiver and toric diagram for the conifold.

SU(2)1 SU(2)2 U(1)R U(1)B monomial

j1 m1 j2 m2

A1
1
2 +1

2 0 0 1
2 1 t1x

A2
1
2 −1

2 0 0 1
2 1 t1

x

B1 0 0 1
2 +1

2
1
2 −1 t2y

B2 0 0 1
2 −1

2
1
2 −1 t2

y

Table 1: Global charges for the basic fields of the quiver gauge theory living on the D-brane

probing the conifold.

3. Review of the conifold example

To demonstrate our general discussion above and to prepare for more involved cases we

start by reviewing the generating function for the conifold.

The gauge theory on the conifold has a global symmetry SU(2)1 × SU(2)2 × U(1)R ×

U(1)B . It has four basic fields A1,2 and B1,2 that transform under these symmetries

according to table 1.

The last column represents the corresponding monomial in the generating function for

BPS operators in the chiral ring. t1 is the chemical potential for the number of A fields, t2 is

the chemical potential for the number of B fields, x is the chemical potential for the Cartan

generator of SU(2)1, and y is the chemical potential for the Cartan generator of SU(2)2.

The theory has a single baryonic charge U(1)B which is not anomalous. We can

introduce a corresponding chemical potential b. With this notation we have t1 = tb and

t2 = t
b
. The chemical potentials t and b keep track of the R-charge and the baryonic charge

B, respectively.

Since the F-terms of the theory are

A1BiA2 − A2BiA1 = 0 B1AiB2 − B2AiB1 = 0 i = 1, 2

they vanish for N = 1. The N = 1 generating function is thus freely generated by the four

basic fields of the conifold gauge theory and it takes the form

g1(t1, t2, x, y; C) =
1

(1 − t1x)(1 − t1
x
)(1 − t2y)(1 − t2

y
)
. (3.1)
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tB=1B=−1 B=0 B=2

Figure 2: The GKZ decomposition for the Kähler moduli space of the conifold, consisting of two

one-dimensional cones connected by a flop. The coordinate t on the moduli space is associated with

the volume of the two-cycle in the resolution of the conifold. When t goes to zero, the cycle vanishes

and we can perform a flop on the variety by inflating a different two-cycle. A natural discretization

of the GKZ fan is in correspondence with the decomposition of the g1 generating function.

In the following we set x = y = 1 for simplicity. General formulae including the SU(2)

chemical potentials can be found in [12] and in section 5.

g1 decomposes into sectors with fixed baryonic charge B, each with multiplicity one:

g1(t1, t2; C) =

∞
∑

B=−∞

g1,B(t1, t2; C),

g1,B>0(t1, t2; C) =

∞
∑

n=0

(n + 1 + B)(n + 1)tn+B
1 tn2

g1,B<0(t1, t2; C) =
∞
∑

n=0

(n + 1)(n + 1 + |B|)tn1 t
n+|B|
2 (3.2)

It is manifest that each term in g1,B has a monomial bB corresponding to a baryonic

charge B. The decomposition into each baryonic charge can be computed by expanding

g1(t, b; C) in a formal Laurent series in b or by determining the functions g1,B by resolving

the CY, see figure 2, and using the equivariant index theorem. Both computations have

been discussed in detail in [12] and will be reviewed in the following sections.

The decomposition has a clear interpretation in terms of supersymmetric D3-branes

states: g1,B counts the supersymmetric D3-branes wrapping cycles of homology B thus

corresponding to states with baryonic number B. Quite remarkably, the structure of the

integer lattices with generating function g1,B and the explicit computation with the index

theorem, strongly suggests a relation between B and a discretized Kähler modulus of the

resolved CY [12].

The result for generic N is obtained as follows

g(ν; t1, t2; C) =

∞
∑

B=−∞

PEν [g1,B(t1, t2; C)],

g(ν; t1, t2; C) =

∞
∑

N=0

νNgN (t1, t2; C) (3.3)
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Here we list the generating functions for small values of N

g2(t1, t2; C) =
1 + t1t2 + t21t

2
2 − 3t41t

2
2 − 3t21t

4
2 + t51t

3
2 + t31t

5
2 − 3t31t

3
2 + 4t41t

4
2

(1 − t21)
3(1 − t1t2)3(1 − t22)

3
. (3.4)

g3(t1, t2; C) =
F (t1, t2)

(1 − t31)
4(1 − t1t2)3(1 − t21t

2
2)

3(1 − t32)
4
, (3.5)

F (t1, t2) = 1 + t151 t92 + 3t141 t82(−1 + 2t32) + t1(t2 + 2t42) + t21(7t
2
2 − 4t52) + t31(7t

3
2 − 10t62)

+3t131 t72(−1 + 2t62) + t121 t62(9 − 34t32 + 22t62) + t71t
4
2(−22 + 35t32 + 8t62 − 3t92)

−t81t
5
2(4 − 35t32 + 10t62 + 3t92) + t61t

3
2(−10 − t32 + 4t62 + 9t92)

+t101 (6t42 + 8t72 − 26t102 ) + t91t
6
2(4 + 31t32 − 34t62 + t92)

+2t111 t52(3 − 5t32 − 7t62 + 3t92) + 2t41(t2 + t42 − 11t72 + 3t102 )

+2t51t
2
2(−2 − 5t32 − 2t62 + 3t92) (3.6)

4. Expanding the N = 1 generating function

Our decomposition of the ring of invariants of the gauge theory is a decomposition into

different types of determinants. For simplicity, we will use the following notation: given

a pair of gauge groups (α, β), α, β = 1, . . . , G, we call determinant of type (α, β) a gauge

invariant of the form

ǫi1,...,iN (X
(α,β)
I1

)j1i1 . . . .(X
(α,β)
IN

)jN

iN
ǫj1,...,jN

where (X
(α,β)
I )ji denotes a string of elementary fields with all gauge indices contracted

except two indices, i and j, corresponding to the gauge groups (α, β). The index I runs

over all possible strings of elementary fields with these properties. The full set of invariants

is obtained by arbitrary products of these determinants. Using the tensor relation

ǫi1,...,iN ǫj1,...,jN
= δi1

[j1
· · · δiN

jN ]

some of these products of determinants are equivalent and some of these are actually

equivalent to mesonic operators made only with traces. In particular, mesons are included

in the above description as determinants of type (α,α).

We can decompose the ring of invariants according to the baryonic charges, which

indeed distinguish between different types of determinants, or baryons. This decomposition

is natural in field theory and it also has a simple interpretation in the dual gravity theory.

In fact, in theories obtained from D3-branes at CY singularities, baryons can be identi-

fied with branes wrapped on nontrivial cycles on the base H of the CY. The non-anomalous

symmetries can be clearly identified in the dual theory. In particular, states with the same

non-anomalous baryonic charges can be continuously deformed into each other: we can

thus relate the set of non-anomalous baryonic charges to the group of three-cycles in H.

The homology H3(H, Z) = Z
d−3 × Γ determines d − 3 continuous baryonic charges (d is

the number of vertices of the toric diagram) and possibly a set of discrete baryonic charges

from the torsion part Γ.

In the case of the conifold there is one non-anomalous baryonic charge (since d = 4)

which is related to the single three-cycle in the base T 1,1. There are only two gauge groups

– 9 –
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and two types of determinants: (1, 2) and (2, 1). The invariants decompose according to

the baryonic charge:

1. B = 0 corresponds to the mesons (D3-branes wrapping trivial cycles, a. k. a. giant

gravitons [43]),

2. B > 0 corresponds to the sector containing the determinants (detA)B and all possible

mesonic excitations (D3-branes wrapping B times the 3-cycle),

3. finally, B < 0 corresponds to the sector containing the determinants (detB)|B| and all

possible mesonic excitations (D3-branes wrapping |B| times the 3-cycle with opposite

orientation).

The conifold picture is nice and in many ways elegant. However, a simple look at any

other quiver gauge theory reveals that this simple picture is too naive. Consider, for exam-

ple, the case of the orbifold C
3/Z3 (see figure 4), that already reveals all types of oddities:

• Since d = 3, there is no continuous non-anomalous baryonic symmetry. How-

ever, H3(S5/Z3, Z) = Z3 and there is a discrete baryonic symmetry. We can in-

deed construct determinants, for example, using the fields U,V and W with Z3

charge +1. These do not carry any continuous conserved charge since the product

detUdetV detW can be rewritten as a meson in terms of traces; for example, using

ǫi1,...,iN ǫj1,...,jN
= δi1

[j1
· · · δiN

jN ] we can write,

detU1 detV1 detW1 = det(U1V1W1) = Tr(U1V1W1)
N + · · · ± (TrU1V1W1)

N

On the other hand, (detU1)
3 cannot be reduced to traces simply because there are

no gauge invariant traces we can make with U1 alone: we have actually an infinite

number of products of determinants ((detU)n for n = 1, 2, . . . for example) that

cannot be rewritten in terms of mesons. All these operators correspond in the ring

of invariants to sectors that cannot be distinguished by the discrete baryonic charge.

• The BPS D3-brane configurations wrap divisors in the CY: for C
3/Z3 we have just

a single divisor D satisfying 3D = 0 and this agrees with the homology of the base

S5/Z3. However, we also have a vanishing compact four-cycle which is represented

in toric geometry by the integer internal point of the toric diagram. The size of

this cycle becomes finite when we blow up the orbifold. It is conceivable that the

inclusion of compact four-cycles such as this one will affect the description of the

classical configuration space of D3-branes. This will add a new parameter, related to

the group of divisors on the CY resolution, which has dimension one.

• We could distinguish among elementary fields and types of determinants by using

all the possible baryonic charges, including the anomalous ones. For C
3/Z3 this

would lead to the inclusion of the two existing anomalous baryonic charges. As we

will explain, this set of charges is different and complementary with respect to that

related to the group of divisors on the resolution.
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Having this example in mind, we now discuss the two possible expansions of the ring

of invariants. Explicit examples of the decompositions will be presented in section 5. We

encourage the reader to jump forth and back with section 5 for a better understanding of

the material.

4.1 Expanding in a complete set of baryonic charges

The most general decomposition of the g1({ti}) generating function is according to the full

set of baryonic charges, including the anomalous ones, denoted by ai. The sectors S in this

case correspond to sectors with definite anomalous and non-anomalous baryonic charges.

There are G−1 independent baryonic charges, where G is the number of gauge groups.

By gauging the baryonic symmetries, we would obtain a quiver theory with the same fields

and superpotential, and a gauge group

G
∏

i=1

U(N) / U(1),

where we factor out the overall decoupled U(1). Some of the U(1) factors will be anomalous,

of course. The baryonic charges have a very natural description: they correspond to

the U(1) factors in U(N)G/U(1). In this way, different elementary fields have the same

baryonic charges if and only if they are charged under the same gauge groups. This allows

to efficiently distinguish between invariants belonging to different sectors. Notice that non-

anomalous baryonic symmetries alone would not distinguish all inequivalent possibilities.

For example, in C
3/Z3, the mesonic operator detU1 detV1 detW1 and the determinant

(detU1)
3 have the same charge under Z3, but different charges under the two anomalous

baryonic symmetries.

Let us thus extend the set of chemical potentials ti to all the baryonic charges, including

the anomalous ones. We can therefore decompose Rinv
N=1 into sectors with definite charges

under U(1)G−1.

The N = 1 generating function g1({ti}) will decompose into a formal Laurent series

in the baryonic chemical potentials bi and ai. The explicit decomposition of g1 into a

formal Laurent series can be done by repeatedly applying the residue theorem; the com-

putation however quickly becomes involved, since the order of integration becomes crucial

and divides the result into many different cases. The ring of invariants Rinv
N , will similarly

decompose into sectors of definite baryonic charges. The generating function gN ({ti}) can

then be computed according to equation (2.2).

We can understand this decomposition in terms of representation theory. From this

perspective, we have decomposed the ring of SU(N)G invariants into Abelian represen-

tations of the extended group U(N)G/U(1). This is sometimes called an expansion in

covariants and is extremely natural from the point of view of invariant theory. From

our point of view, covariants are just the possible set of independent determinants. Each

sector S in Rinv
N will be specified by a certain number of gauge group pairs (αi, βi) and

is associated to the subsector of the ring of gauge invariants made with products of the

determinants of type (αi, βi).
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To make connection with the toric quiver gauge theories we notice that we have the

relation [29]:

G − 1 = 2I + (d − 3) (4.1)

where d in the number of vertices of the toric diagram and I the number of integer internal

points. Only d − 3 of these baryonic symmetries are not anomalous.

We expect all sectors S to appear with multiplicity one in the decomposition of equa-

tion (2.2).

4.2 Supersymmetric D3-branes and the GKZ decomposition

The full set of BPS states of the dual gauge theory can be obtained by quantizing the

classical configuration space of supersymmetric D3-branes wrapped on the CY horizon [48,

49, 4]. The supersymmetric D3-brane configurations are in one-to-one correspondence

with holomorphic four-cycles in the CY, or divisors [48]. This is clear for static D3-branes

wrapping a three-cycle in the horizon: the corresponding divisor is the cone over the three-

cycle. For more general configurations of excited and rotating D3-branes we obtain a

four-cycle by a Euclidean continuation: we can replace time with the radial coordinate

using the isometries of (Euclidean) AdS5. Our problem can be equivalently rephrased in

terms of holomorphic surfaces in the CY manifold with g1 as a generating function.

From this perspective, we have an obvious decomposition into sectors S corresponding

to Euclidean D3-branes that can be continuously deformed into each other in the CY.

Such D3-branes have the same non-anomalous baryonic numbers; indeed, geometrically,

the non-anomalous baryonic charges are identified with the group of divisors modulo linear

equivalence. Let us discuss this point in detail for toric varieties since it will be crucial in

the following.

Recall that our conical CY is specified by a toric diagram in the plane with d vertices

having integer coordinates ni. By embedding the plane in three dimensions we have a toric

cone with edges Vi = (ni, 1) ∈ Z
3 (the toric fan of our conical CY). Call the set of edges

Σ(1). Assign a “homogeneous coordinate” xi to each Vi ∈ Σ(1); the xi span C
d. Consider

the group

K =

{

(µ1, . . . , µd) ∈ (C∗)d

∣

∣

∣

∣

∣

d
∏

i=1

µ
〈m,Vi〉
i = 1,m ∈ Z

3

}

, (4.2)

which acts on xi as

(x1, . . . , xd) → (µ1x1, . . . , µdxd) .

K is isomorphic, in general, to (C∗)d−3 times a discrete group. Then, the conical CY is

defined by the symplectic quotient:

CY = (Cd \ ∆)/K

where ∆ is a subset fixed by the action of K. Geometrically, the xi can be interpreted

as homogeneous coordinates on the CY, just like the familiar coordinates for projective

spaces. The residual (C∗)3 complex torus action acting on the CY is dual to the flavor

symmetry group in the gauge theory, while the group K is dual to the non-anomalous
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baryonic symmetry group. Notice that the flavor and baryonic symmetries nicely combine

in the full group of d non-anomalous charges which act naturally on the d homogeneous

coordinates xi as (C∗)d acts on C
d. In the tiling construction, the xi are used to assign the

non-anomalous charges to each field in the quiver [53, 52, 35].

On the other hand, in toric geometry each edge Vi determines a (not necessarily com-

pact) four-cycle Di in the CY. A generic four-cycle is given by a linear combination of basic

divisors
∑d

i=1 aiDi where ai are integer coefficients. These divisors are subject to precisely

three linear equivalence conditions given by

d
∑

i=1

〈ek, Vi〉Di = 0 k = 1, 2, 3

where ek is a basis for Z
3. It is then easy to see that the group of four-cycles modulo

linear equivalence is isomorphic to the baryonic group K. It follows that the non-anomalous

baryonic symmetry distinguishes deformation equivalence classes of Euclidean D3-branes.

However this is not the end of the story. The decomposition into non-anomalous

baryonic charges is not fine enough. A D3-brane state with baryonic charge B can form a

sort of bound state which distinguishes it from a set of B D3-brane states with baryonic

charge one. This typically happens in theories where there are elementary fields with

multiple non-anomalous baryonic charges. By going over examples, it easy to convince

oneself that the classical D3 brane configurations obtained from divisors on the singular

CY do not exhaust all possible sectors of the dual gauge theory. However, as already

mentioned, we have a plethora of compact vanishing four-cycles that are expected to enter

in the description of the set of supersymmetric D3-branes and solve these ambiguities. We

have exactly I compact vanishing four-cycles, one for each integer internal point in the

toric diagram. These cycles become of finite size in the smooth resolutions of the CY. We

will see that with the addition of these divisors we can give a convenient description of all

sectors in the dual gauge theory. It would be interesting to understand the necessity for the

inclusions of these divisors directly from the point of view of the geometric quantization of

classical supersymmetric branes living on the horizon.

We are led to enlarge the set of basic divisors of size d−3 to a larger set of size d−3+I by

adding a divisor Di for each internal point of the toric diagram. We now have a larger group

of divisors which strictly contains the baryonic symmetry group. The larger set of divisors

immediately leads us to the description of the Kähler moduli space of the CY, of dimension

d − 3 + I. This moduli space is still a toric variety described by the so-called secondary

fan, or GKZ fan, and it is indeed parameterized by the divisors Di in the larger set.

4.2.1 The GKZ decomposition

It is well known that there are many different smooth resolutions of the CY corresponding

to the possible complete triangulations of the toric diagram. Different resolutions are

connected by flops. The number of Kähler moduli of the CY is I + d − 3 where I is the

number of internal points; this is the same as the number of geometrical FI terms that

appear in the symplectic quotient description of the resolved manifold. This number can
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be greater than the number of non-anomalous baryonic symmetries in field theory, which

is d − 3.

There is an efficient description of the Kähler moduli space in terms of divisors [67].

Take a complete resolution of the variety and consider the set of all effective divisors
{

d+I
∑

i=1

aiDi, such that ai ≥ 0 , ∀i

}

(4.3)

modulo the three linear equivalence conditions given by
∑d+I

i=1 〈ek, Vi〉Di = 0 where ek is

the standard basis for Z
3 and Vi are the vertices of the toric diagram, including the internal

integer points. The ai ∈ R
+ give a parametrization of the d + I − 3 dimensional Kähler

moduli provided we impose a further condition: to have all cycles of positive volumes we

must consider only convex divisors. The convexity conditions can be expressed as follows.

Assign a number ai to the i-th point in the toric diagram. To each triangle σ in the

triangulation of the toric diagram we assign a vector mσ ∈ Z
3 which is the integer solution

of the system of three linear equations,4

〈mσ, Vi〉 = −ai, i ∈ σ (4.4)

and impose the inequalities

〈mσ, Vi〉 ≥ −ai, i 6∈ σ (4.5)

The set of inequalities (4.5), as σ runs over all the triangles, determines the convexity

condition for the divisor. For a given resolution, the set of convex divisors forms a cone

in the R
d+I−3 vector space, that parameterizes the Kähler moduli of the resolution. The

boundary of this cone corresponds to the vanishing of some cycle. If we can perform a flop,

we enter a new region in the moduli space corresponding to a different resolution. Indeed,

the cones constructed via the convexity condition for the various possible resolutions of

the toric diagram form regions in the R
d+I−3 vector space that are adjacent; altogether

these reconstruct a collection of adjacent cones (a fan in toric language) in R
d+I−3. The

toric variety constructed from this fan in R
d+I−3 is the Kähler moduli space of the CY.

This is known as the GKZ fan, or secondary fan [68, 69]. We move from a cone in the

GKZ fan to another by performing flops (or in case we also consider orbifold resolutions by

flops or further subdivisions of the toric diagram). It is sufficient for us to consider smooth

varieties and we thus reserve the name GKZ fan to the collections of cones corresponding

to smooth resolutions.

The GKZ fans for the conifold, F0 and dP1 are given in figures 2, 8 and 12, respectively.

We form a lattice by considering the integer points in the GKZ fan. We claim that the

N = 1 generating function has an expansion in sectors corresponding to the integer points

of the GKZ lattice. Denote by P an integer point in the GKZ lattice, then

g1({ti}) =
∑

P∈GKZ

m(P )g1,P ({ti}), (4.6)

4Actually, these equations can be solved for all simplicial resolutions, corresponding to not necessarily

maximal triangulations of the toric diagram. If we allow triangles with area greater than one, we have

resolved varieties which still have orbifold singularities. For completely smooth resolutions, the vertices of

all triangles σ are primitive vectors in Z
3 and equation (4.4) has integer solutions.
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where m(P ) is the multiplicity of the point P . Furthermore, we conjecture that the

finite N generating function can be obtained as

∑

N

gN ({ti})ν
N =

∑

P∈GKZ

m(P )PEν [g1,P ({ti})] (4.7)

4.2.2 GKZ and field theory content

At the heart of the previous formulae, there is a remarkable connection between the GKZ

decomposition and the quiver gauge theory. To fully appreciate it we suggest to the reader

to read this and the following subsections in close parallel with section 5 where explicit

examples are given.

The integer points in the GKZ fan correspond to sectors in the quantum field theory

Hilbert space made out of determinants. Recall that mesons in the quiver gauge theories

correspond to closed paths in the quiver. We want to associate similarly the other indepen-

dent sectors made out of determinants with equivalence classes of open paths in the dimers.

The open paths fall into equivalence classes A specified by the choice of ending points on

the dimer. The open path in a given class can be reinterpreted in the gauge theory as

strings of elementary fields with all gauge indices contracted except two corresponding to

a choice of a specific pair of gauge groups; let us call these composite fields. Baryonic op-

erators are written as “det A”, which is a schematic expression for two epsilons contracted

with N composite fields freely chosen among the representatives of the class A. Generic

sectors are made with arbitrary products detAdet B . . . .etc. Whenever open paths A and

B can be composed to give the open path C, there is at least one choice of representatives

for A and B such that we can write det AdetB = det C and we want to consider the two

sectors det Adet B and det C equivalent. This can be enforced as follows. Denote with

letters a, b, c . . . the equivalence classes of arrows in the quiver connecting different gauge

groups. By decomposing open paths in strings of letters, we can associate a sector with

a string of letters. We should however take into account the fact that if, for example, the

arrows a, b, c make a closed loop, the operator

(det a)(det b)(det c) = det abc

is a meson. We take into account this fact by imposing the constraint abc = 0. Moreover,

composite fields connecting the same pairs of gauge groups as an elementary fields do

not determine the existence of new independent determinants; to avoid overcountings, the

corresponding string of letters should be set to zero. Analogously, whenever two different

strings of letters correspond to open paths with the same endpoints, these strings should

be identified. We call I the set of constraints obtained in this way and construct the ring

RGKZ = C[a, b, c . . .]/I

Quite remarkably, the monomials in the ring RGKZ are in correspondence with the

integer points in the GKZ fan. More precisely, we can grade the ring with d − 3 + I

charges in such a way that the generating function of RGKZ, which we call the auxiliary
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GKZ partition function, and is denoted by Zaux, counts the integer points in the GKZ

fan. Moreover, any integer point P comes with a multiplicity m(P ) which is the one in

equation (4.6).

We have explicitly verified the above statement in all the examples we studied and we

conjecture that it is a general result for all toric diagrams: the auxiliary partition function

counting open paths in the quiver modulo equivalence coincides with the generating func-

tion for the GKZ lattice dressed with field theory multiplicities. Just another remarkable

connection between apparently different objects: combinatorics on the tiling, geometry of

the CY and gauge theory!

As another example of this fascinating correspondence, we will see that it is possible

to eliminate multiplicities by refining the GKZ lattice. This is done by enlarging the set

of charges. In particular, we have found that, if we refine the GKZ lattice by adding the

anomalous baryonic charges, we obtain a “hollow cone” in Z
d−3+3I with no multiplicities.

As previously explained in a generic toric quiver gauge theory there are 2I anomalous

baryonic symmetries, where I is the number of internal integer points. The variables

in the auxiliary GKZ ring RGKZ corresponds to arrows in the quiver and therefore can

be assigned a definite charge under the baryonic symmetries that are just the ungauged

U(1) gauge group factors. We can therefore grade the auxiliary ring RGKZ with a set of

d − 3 + 3I weights: the original d − 3 + I discretized Kähler parameters (β1, . . . , βd−3+I)

of the GKZ lattice plus the 2I anomalous baryonic weights ai. The power series expansion

of the auxiliary partition function Zaux(βi, ai) will draw a lattice in Z
d−3+3I which has the

shape of an hollow cone over the GKZ fan: over each point of the GKZ fan there is a

hollow polygon C(P ) whose shape is related to the pq-web of the toric geometry. Quite

remarkably, all points in the lattice come with multiplicity one. Examples for C
3/Z3, F0

and dP1 are presented in figure 5, 9, 13 and 14.

4.2.3 Computing g1,P for one D brane in a sector P using localization

We want to demonstrate now how it is possible to compute the partition functions g1,P

using the equivariant index theorem.

Every integer point P in the GKZ fan is associated with a smooth resolution of the

CY and a particular divisor
∑

aiDi on it. Extending our interpretation of the BPS states

in terms of supersymmetric D3-branes wrapping holomorphic cycles in the singular CY to

its resolution, we have a natural definition for the function g1,P : it should count all the

sections of the line bundle O(
∑

aiDi) corresponding to holomorphic surfaces in the given

linear equivalence class. Therefore g1,P is just the character

Tr
{

H0
(

CY,O
(

∑

aiDi

))

∣

∣q
}

under the action of the element q ∈ T 3 of the torus of flavor symmetries. All elements in

H0(CY,O(
∑

aiDi)) have the same baryonic charges. It is important to notice that the

higher cohomology groups of a convex line bundle vanish [70]: the character then coincides

with the holomorphic Lefschetz number and can be computed with the equivariant index

theorem.

– 16 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
2

The way of doing this computation is explained in detail in [9], generalizing the anal-

ogous computation for holomorphic functions given in [50], and expresses the result as a

sum over the fixed points PI of the torus T 3 action on the particular smooth resolution

of the CY corresponding to the point P in the GKZ lattice. It is known indeed that

the torus action has only isolated fixed points on the resolved CY. The character receives

contributions only from the fixed points and reads

g1,P ({ti};CY ) = tnP

∑

PI

qm
(I)
P

∏3
i=1

(

1 − qm
(I)
i

) , (4.8)

where the index I denotes the set of isolated fixed points and the four vectors m
(I)
i , i =

1, 2, 3, m
(I)
P in Z

3 are the weights of the linearized action of T 3 on the resolved CY and the

fiber of the line bundle O(
∑

aiDi), respectively.

The fixed points of the torus action are in correspondence with the triangles in the

subdivision of the toric diagram (or, equivalently, with the vertices of the pq-web). The

vectors m
(I)
i , i = 1, 2, 3 in the denominator of equation (4.8) are computed as the three

primitive inward normal vectors of the cone σI in Z
3 made with the three vertices Vi of the

I-th triangle. The vector m
(I)
0 in the numerator is instead computed as in equation (4.4)

〈m
(I)
0 , Vi〉 = −ai, i ∈ σI (4.9)

Finally, the prefactor tnP in equation (4.8) is just the charge of the divisor
∑

aiDi. The

full dependence on baryonic charges in encoded in this prefactor.

In explicit computations, some care should be paid to the choice of charges. There is

a natural geometric basis for the non-anomalous charges of the gauge theory. In fact, the

homogeneous coordinates xi that are used to define the CY as a symplectic quotient (see

section 4.2.1) are extremely useful to assign a full set of d (flavor+baryonic) charges to

the elementary fields in the quiver; this is done using zig-zag paths and standard dimers

techniques [35, 55]. All the elementary fields have charge which is given by a product of

the xi. We can also assign charge xi to the divisor Di of the singular cone. In all the

examples we have considered there is a natural way to assign charges to the enlarged set of

divisors entering the GKZ decomposition. This allows to compute the prefactor tnP . The xi

decompose into three flavor charges and d−3 baryonic charges. The splitting of the charges

xi into flavor and baryonic charges is not unique in general; flavor charges can be always

redefined by adding a linear combination of the baryonic charges. However, a toric diagram

comes with a specific basis for the flavor T 3 action which is determined by the equation

qk =

d
∏

i=1

x
〈ek ,Vi〉
i k = 1, 2, 3, (4.10)

where ek are the basis vectors of Z
3 and Vi the vertices of the toric diagram. Notice that

all dependence on baryonic charges drops from the right hand side by equation (4.2). This

is the T 3 basis that should be used in the localization formula (4.8).

– 17 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
2

4.2.4 Checks with all charges: GKZ approach vs. field theory

Having understood how to compute and resolve the multiplicities in the GKZ cones and

to compute the partition functions we can also refine our decomposition of the N = 1

generating function by adding the anomalous baryonic charges.

Using the equivariant index theorem we compute all the generating functions g1,P for

all points P in the GKZ lattice. We can use d − 3 + I coordinates for the GKZ cone β =

(β1, . . . , βd−3+I). Denote also with B(β) the non-anomalous baryonic charge corresponding

to the point P of the GKZ lattice. As discussed in section 4.2.3, the generating functions

depend on the baryonic charges only by a multiplicative factor: g1,P = bB(β)g1,β(q) and

all the other dependence is on the flavor charges qi. Thanks to the auxiliary generating

functions we were able to find expressions for the multiplicities m(β) of the fields over each

point of the GKZ lattice. These fuctions sum up to the complete generating functions with

N = 1 and with all the non-anomalous charges:

g1(q, b) =
∑

P ∈ GKZ

m(P ) g1,β(q) bB(β) (4.11)

where b are the chemical potentials for the non-anomalous baryonic charges. To resolve

the multiplicities m(β) we construct the hollow cone by adding the anomalous baryonic

charges. Over each point in the GKZ lattice there is a hollow polygon C(β) which can be

parametrized in terms of the set of 2I anomalous charges aj with j = 1, . . . , 2I, such that:

∑

Kj ∈ C(β)

aK1
1 . . . aK2I

2I

∣

∣

∣

(a1=1, ..., a2I=1)
= m(P ) (4.12)

Using these resolutions we obtain the resolved generating functions for N = 1 with all

the charges, anomalous and non-anomalous:

g1(q, b, a) =
∑

β ∈ GKZ

∑

Kj ∈ C(β)

aK1
1 . . . aK2I

2I bB(β) g1,β(q) (4.13)

The non flavor charges do not appear in the basic generating functions g1,β(q), but

they are multiplicative factors over which one has to sum up, in the same way one does for

the usual non-anomalous baryonic charges.

We would like to stress that equation (4.13) points to a remarkable connection between

the geometry of the CY, which is used to compute the right hand side, and the field theory,

that can be used to determine the left hand side (the N = 1 generating function). In other

words, we have two different ways of computing the N = 1 generating g1(q, b, a) function

which nicely match:

• In the first case we use the GKZ geometric picture explained in the previous sections.

We first compute the generating functions g1,β(q) for each point in the GKZ lattice

which depend on the flavor charges. We next sum over all the points of the hollow

cone by dressing g1,β(q) with the appropriate weight under the baryonic symmetries.
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• In the second case we use the field theory picture. We can take the fields of the gauge

theory as basic variables and we assign to them all the possible charges anomalous

and non-anomalous. This means that we construct the ring generated by the funda-

mental fields and we grade it with all the charges. Then we construct the quotient

ring by modding out the ring of elementary fields by the ideal generated by F -term

equations. Using Macaulay2 we compute the Hilbert series of the quotient ring ob-

taining the completed resolved generating function with all the charges of the field

theory: g1(q, b, a).

As we will explicitely demonstrate on the examples in section 5, the two computations

completely agree.

As a final remark, we notice that equation (4.13) is the most general decomposition

of the N = 1 generating function that we can write. We can close our circular discussion

and go back to the initial point. Equation (4.13) has been obtained by enlarging the

GKZ lattice in order to eliminate multiplicities. The hollow cone is a lattice in d − 3 + 3I

dimensions. The corresponding d − 3 + 3I charges contain, as a subset, all the anomalous

and non-anomalous baryonic charges that are in number d− 3 + 2I. Notice that the terms

in series in equation (4.13) depend on the extra I GKZ parameters only through the factor

bB(β). By projecting the hollow cone on the d − 3 + 2I dimensional space of baryonic

charges we obtain the explicit expansion of the N = 1 generating function g1(q, b, a) in a

complete set of baryonic charges which was discussed in section 4.1. One can compare this

expansion with the one obtained by performing repeated contour integrations. As one can

check explicitly, the points in the baryonic charge lattice have still multiplicity one.

5. Examples

In this section we explicitly compute the N = 1 generating function for a certain number of

toric CY manifolds and decompose it. We start by revisiting the example of the conifold.

5.1 The conifold revisited

The conifold has only one baryonic charge, not anomalous, which can be used to

parametrize the Kähler moduli space. The two expansions, one in baryonic charges, the

other according to the GKZ lattice, coincide.

Baryonic charge expansion. We first expand the N = 1 generating function, equa-

tion (3.1) for the conifold according to the baryonic charge

g1(t, b, x, y; C) =
∞
∑

B=−∞

bBg1,B(t, x, y; C), (5.1)

g1,B(t, x, y; C) can be computed using the inversion formula

g1,B(t, x, y; C) =
1

2πi

∮

db

bB+1
g1(t, b, x, y; C), (5.2)
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(−B,−B,B)
V =(0,0,1)4 V =(1,0,1)1

V =(1,1,1)2V =(0,1,1)3

D3 D2

D1D4

(1,0,0)

(0,−1,1)

(0,1,0)

(−1,0,1)

(0,1,0)

(1,0,0)

(0,−1,1)

(−1,0,1)

(0,0,0)

(−B,B,0)

(0,0,0)

(−1,−1,1)

(1,1,−1)

B > 0 B < 0

(1,−1,0)(−1,1,0)

Figure 3: Localization data for the N = 1 baryonic generating functions. The vertices Vi are in

correspondence with homogeneous coordinates xi and with a basis of divisors Di. Two different

resolutions, related by a flop, should be used for positive and negative B, respectively. Each

resolution has two fixed points, corresponding to the vertices of the pq-webs; the weights m
(I)
i , i =

1, 2, 3 and m
(I)
B at the fixed points are indicated in black and red, respectively.

with a careful evaluation of the contour integral for positive and negative values of the

baryonic charge B. For B ≥ 0 the contribution of the contour integral comes from the

positive powers of the poles for b (b = x/t, 1/(xt)) while for B ≤ 0 the contribution of the

contour integral comes from the negative powers of the poles for b (b = ty, t/y)

g1,B≥0(t, x, y; C) =
tBxB

(

1 − 1
x2

)

(1 − t2xy)
(

1 − t2x
y

) +
tBx−B

(1 − x2)
(

1 − t2y
x

) (

1 − t2

xy

) ,

g1,B≤0(t, x, y; C) =
t−By−B

(

1 − 1
y2

)

(1 − t2xy)
(

1 − t2y
x

) +
t−ByB

(1 − y2)
(

1 − t2x
y

)(

1 − t2

yx

) .

(5.3)

By setting x = y = 1 and t1 = bt, t2 = t/b we recover expansion (3.2).

5.1.1 Conifold-GKZ decomposition

We can similarly perform a GKZ decomposition of the N = 1 generating function. In

figure 3 the toric diagram and the two resolutions of the conifold are reported. There are

four divisors Di subject to three relations that leave an independent divisor D, D1 = D3 =

−D2 = −D4 ≡ D. Consider the cone of effective divisors
∑

aiDi, ai ≥ 0 modulo linear

equivalence in R
4

∑

i=1

aiDi ≡ (a1 + a3 − a2 − a4)D ≡ BD

where we defined B = a1 + a3 − a2 − a4. For each resolution, we solve equation (4.4) for

the two triangles in the resolution, or, equivalently, the two vertices of the pq-web; the

resulting vectors m
(I)
i and m

(I)
B are reported in black and red respectively in figure 3.

The convexity condition, equation (4.5), then tells us that the resolution on the left

corresponds to B > 0 and the resolution on the right to B < 0. Altogether we obtain two
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half lines (cones) in R that form the GKZ fan as in figure 2. The point of intersection

B = 0 of the two cones corresponds to the singular conifold and the two cones in the fan

are related by a flop transition.

We now compute the generating functions g1,B using localization. As mentioned in the

previous section, we must pay attention to the normalization of charges. The homogeneous

coordinates for the conifold are extremely simple:

(A1 , B1 , A2 , B2 ) −→ (x1 , x2 , x3 , x4)

which can be easily translated in the notations of section 3. The natural flavor T 3 basis is

then given by equation (4.10)

q1 = x1x2 = t2xy,

q2 = x2x3 =
t2y

x
,

q3 = x1x2x3x4 = t4. (5.4)

We are ready to apply the localization formula. Each point in the GKZ fan is associated

with a resolution and a divisor: for B > 0 we use the resolution on the left in figure 3 and

BD1, while for B < 0 the resolution on the right and the divisor |B|D4. The weights are

reported in figure 3. Equation (4.8) and equation (5.4) give

g1,B≥0(t, x, y; C) =
tBxB

(

1 − 1
x2

)

(1 − t2xy)
(

1 − t2x
y

) +
tBx−B

(1 − x2)
(

1 − t2y
x

) (

1 − t2

xy

) ,

g1,B≤0(t, x, y; C) =
t−By−B

(

1 − 1
y2

)

(1 − t2xy)
(

1 − t2y
x

) +
t−ByB

(1 − y2)
(

1 − t2x
y

)(

1 − t2

yx

) .

which coincides with the result previously obtained in equation (5.3).

5.1.2 Conifold-multiplicities in the GKZ decomposition

The multiplicities in the GKZ decomposition of the N = 1 generating function for the

conifold are trivial since they are all equal to 1. Nevertheless it is instructive to follow the

procedure which is outlined in section 4.2.2 in order to compute the multiplicities using the

auxiliary GKZ partition function Zaux(t) which counts independent sectors in the ring of

invariants. As explained in section 4.2.2, we assign a letter a, b to the two types of arrows

in the quiver Ai,Bi. There is only one relation ab = 0 corresponding to the closed loop in

the quiver. The polynomial ring for the GKZ decomposition of the conifold is therefore

RGKZ(C) = C[a, b]/(ab), (5.5)

We thus compute the generating function for the polynomial ring (which can be easily

computed by observing it is a complete intersection), with chemical potential t1 to a and

t2 to b we find

Zaux(t1, t2; C) =
1 − t1t2

(1 − t1)(1 − t2)
= 1 +

∞
∑

B=1

tB1 +

∞
∑

B=1

tB2 (5.6)
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t3

2

1

(−1,−1,1)

(1,0,1)

(0,1,1)

3

u

v

w

Figure 4: Quiver and toric diagram for C3/Z3.

By expanding this auxiliary partition function we find multiplicity 1 for the integer

points B > 0, multiplicity 1 for the integer points B < 0, and multiplicity 1 for the point

B = 0, reproducing the lattice depicted in figure 2. We finally have

g1(t1, t2) = g1,0(t1, t2) +

∞
∑

B=1

g1,B(t1, t2) +

−1
∑

B=−∞

g1,B(t1, t2), (5.7)

which appears to be a trivial observation as a Laurent series in the baryonic chemical

potential but in fact turns out to be nontrivial for more involved singularities.

5.2 Generating functions for C
3/Z3

The quiver of the gauge theory for the C
3/Z3 singularity is shown in figure 4. The gauge

theory has three sets of bifundamental fields Ui,Vj ,Wk with i, j, k = 1, 2, 3 and a super-

potential ǫijkUiVjWk.

Symmetries and geometry. The global flavor symmetry is SU(3)×U(1)R. All the fields

have R-charge 2/3 and each set of three fields transform in the fundamental representation

of SU(3). One can also define two anomalous baryonic U(1) charges which can be chosen

to be

A1 : (U,V,W) 7→ (a1U, a−1
1 V, W)

A2 : (U,V,W) 7→ (a2U, a2V, a−2
2 W)

There are some non-anomalous discrete symmetries [71] acting on the fields as follows,

A : (U,V,W) 7→ (W,U,V)

B : (U,V,W) 7→ (bU, b−1V, W) where b3 = 1

C : (U,V,W) 7→ (cU, cV, c−2W) = (cU, cV, cW) where c3 = 1

We see that B is a subgroup of A1 and C is subgroup of A2. C is related to the torsion

homology group for three cycles and, in a sense, is a discrete baryonic charge.

– 22 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
2

field SU(3) R A1 A2 chemical homogeneous

potentials coordinates

(U1 ,U2 , U3) 3
2
3

1 1 (ta1a2y , ta1a2x , ta1a2/xy) (ct1 , ct2 , ct3)

(V1 ,V2 ,V3) 3
2
3

−1 1 (ta2y/a1 , ta2x/a1 , ta2/a1xy) (ct1 , ct2 , ct3)

(W1 ,W2 ,W3) 3
2
3

0 −2 (ty/a2
2 , tx/a2

2 , t/a2
2xy) (ct1 , ct2 , ct3)

Table 2: Global charges for the basic fields of the quiver gauge theory living on the D-brane

probing the orbifold C3/Z3. The x and y chemical potentials count SU(3) weights, while A1 and

A2 count anomalous baryonic charges.

We now have a look at the geometry of the CY using the symplectic quotient construc-

tion outlined in section 4.2. Since d = 3 we introduce three homogeneous coordinates xi.

The group K of baryonic charges is defined by equation (4.2)

3
∏

j=1

µ
〈ei,Vj〉
j = 1

which implies µj = c with c3 = 1. The symplectic quotient description of the CY just

reduces to the orbifold description C[x1, x2, x3]/Z3, as expected.

As already discussed, the homogeneous coordinates can be used to give a full set of

weights for non-anomalous symmetries to the elementary fields. We can write xi = cti in

terms of the discrete baryonic charge c and the flavors ti. The assignment of charges to the

fields is done using standard dimer techniques and is reported in table 2. One can notice

that ti are the charges of the original N = 4 SYM. To keep track of the coordinates on the

two dimensional projection in figure 4 we introduce three chemical potentials t, x, y which

count the R-charge, and the (x, y) integral positions, respectively and read from the figure

t1 = ty, t2 = tx, t3 = t
xy

.

The full set of continuous charges, anomalous or not, is summarized in the table 2, as

well as the chemical potentials and the assignment of homogeneous coordinates to the fields.

5.2.1 The N = 1 generating function

The N = 1 generating function is generated by the elementary fields Ui,Vj ,Wk modulo

nine F-term relations which can be expressed through the ideal

I = (V2W3 − V3W2, V1W3 − V3W1, V1W2 − V2W1,

U2W3 − U3W2, U1W3 − U3W1, U1W2 − U2W1,

V2U3 − V3U2, V1U3 − V3U1, V1U2 − V2U1).

Each field carries R-charge 2
3 and therefore we can give to all the same weight for the

chemical potential, t. Computing the Hilbert series of the polynomial ring

RN=1(C
3/Z3) = C[{Ui}, {Vj}, {Wk}]/I (5.8)

with Macaulay2 we obtain

g1(t; C
3/Z3) =

1 + 4t + t2

(1 − t)5
. (5.9)
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The dimension of an irreducible algebraic variety V can be computed from its Hilbert

series g(t) by looking at the order of the pole for t → 1

g1(t) ∼
A

(1 − t)dimV
, (5.10)

with the residue A a measure for the volume of this variety. The N = 1 moduli space of

vacua for C
3/Z3 has dimension five, as can be seen from

g1(t) ∼
6

(1 − t)5

This can be understood as three mesonic directions describing the CY plus two independent

baryonic parameters that correspond to the gauge theory FI terms. As usual, the mesonic

moduli space for N = 1 is isomorphic to the CY geometry. The additional baryonic

parameters come from the fact that the gauge group is SU(N)G and not U(N)G/U(1).

Since we do not have to impose the U(1) D-term conditions, this leaves G − 1 additional

free parameters that can be identified with the FI terms in the gauge theory. Since in

general the mesonic flat directions are given by the symmetrized product of N CY’s for N

D-branes, giving 3N parameters, the dimension of the moduli space for generic N and G

is expected to be 3N + G − 1.

5.2.2 The GKZ decomposition

In the singular CY there is only one independent divisor Di ≡ D with 3D = 0. This reflects

the Z3 discrete charge. However, on the smooth resolution of the orbifold there is a new

divisor D4 corresponding to the internal point. D1 = D2 = D3 = D is still true but now

3D is non-zero, but equal instead to −D4. The cone of effective divisors in R is given by

4
∑

i=1

aiDi = (a1 + a2 + a3 − 3a4)D ≡ βD , ai ≥ 0

and the convexity condition, equation (4.5), requires β ≥ 0. The GKZ fan is thus a half-

line in R. The integer parameter β turns out to be the discrete Kähler modulus of the

resolution of C
3/Z3, measuring the discrete area of the two cycle.

The right basis for localization is given by

qi =

3
∏

j=1

x
〈ei,Vj〉
j

and we compute (notice that the discrete baryonic charge c correctly drops out from this

formula) q1 = t2
t3

, q2 = t1
t3

, q3 = t1t2t3. We thus obtain5

g1,β(t1, t2, t3) =
tβ1

(1 − t31)
(

1 − t2
t1

)

(1 − t3/t1)
(5.11)

+
tβ2

(1 − t1/t2)(1 − t32)(1 − t3/t2)
+

tβ3
(1 − t1/t3)(1 − t2/t3)(1 − t33)

.

5These partition functions reduce for β = 0, 1, 2 to the three independent partition functions for nontrivial

divisors on the singular cone.
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g1,0 is identified with the Molien invariant for the discrete group Z3 and indeed computes

the mesonic generating function as explained in detail in [6]. In the limit ti = t we find

g1,β(t, t, t) = tβ
(

1 + 7t3 + t6

(1 − t3)3
+

3β(1 + t3)

2(1 − t3)2
+

β2

2(1 − t3)

)

. (5.12)

5.2.3 Multiplicities

The multiplicities in the GKZ decomposition of the N = 1 generating function can be

computed using Zaux(t), the auxiliary GKZ partition function counting independent sectors

in the ring of invariants. As explained in section 4.2.2, we assign a letter u, v,w to the three

types of arrows in the quiver Ui,Vj ,Wk. There is only one relation uvw = 0 corresponding

to the closed loop in the quiver. We thus get the polynomial ring

RGKZ(C3/Z3) = C[u, v,w]/(uvw), (5.13)

and compute the generating function (which can be easily computed by assuming it is a

complete intersection), with charge t to all letters obtaining

Zaux(t; C
3/Z3) =

1 − t3

(1 − t)3
= 1 +

∞
∑

β=1

3βtβ . (5.14)

By expanding this auxiliary partition function we find multiplicity 3β for the point

β > 0 and multiplicity 1 for the point β = 0. This is easily understood: the independent

sectors contain determinants of the form (detU)n(detV)m with n+m = β or similar with

U,V,W permuted; there are 3β such sectors. This point will be further elaborated below.

We finally have

g1(t1, t2, t3) = g1,0(t1, t2, t3) +
∞

∑

β=1

3βg1,β(t1, t2, t3). (5.15)

This can be summed easily using equations (5.11) and (5.14) and gives

g1(t1, t2, t3; C
3/Z3) =

1

(1 − t1)3
(

1 − t2
t1

)

(1 − t3/t1)
(5.16)

+
1

(1 − t1/t2)(1 − t2)3(1 − t3/t2)
+

1

(1 − t1/t3)(1 − t2/t3)(1 − t3)3
.

For the special case t1 = t2 = t3 = t we can take the limit or resum, using equa-

tion (5.12),

g1(t, t, t; C
3/Z3) =

1 + 4t + t2

(1 − t)5

which is exactly equation (5.9).
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5.2.4 Refining the GKZ decomposition

Using equation (5.14) we summarize the multiplicities

m(β) =

{

1 for β = 0

3β for β > 0.
(5.17)

For a dibaryon, the AdS/CFT dual object is a D3-brane that wraps a Σ3 = S3/Z3 cycle6

in S5/Z3. The homology tells us that the wrapping number is characterized by an integer,

modulo 3. By resolving the singular Calabi-Yau, this gets promoted to a (non-negative)

integer which is just the coordinate β in the GKZ cone. The GKZ fan does not take into

account the possible topologically nontrivial flat connections on the wrapped D3-brane. To

avoid multiplicities, we include the U(1) extensions of all the discrete charges. The R-charge

is already a coordinate in the GKZ fan and its corresponding GKZ auxiliary generating

function is given in equation (5.14). The remaining charges are the anomalous charges A1

and A2, as given in table 2, which we now add to the lattice as extra coordinates. The

points in the resulting lattice form a “hollow cone” and have no multiplicities.

The dressed auxiliary GKZ partition function which now also contains the anomalous

charges can be computed using the assumption that the polynomial ring, equation (5.13),

is a complete intersection,

Zaux(t, a1, a2; C
3/Z3)=

1 − t3

(1 − ta1a2)(1 − ta2/a1)(1 − t/a2
2)

=

=1 + (a−2
2 + a−1

1 a2 + a1a2)t + (5.18)

+(a−4
2 + a−1

1 a−1
2 + a1a

−1
2 + a2

2 + a−2
1 a2

2 + a2
1a

2
2)t

2 +

+(a−2
1 +a2

1+a−6
2 +a−1

1 a−3
2 +a1a

−3
2 +a−3

1 a3
2+a−1

1 a3
2+a1a

3
2+a3

1a
3
2)t

3+· · ·

By drawing the lattice points in the (A1, A2) lattice one can see that there is a “hollow

triangle” C(β) above each point β in the 1d GKZ cone (figure 5), with edge length measured

by the R-charge. This gives the 1, 3, 6, 9, . . . multiplicities. The same triangle appears in

the pq-web (figure 6) of the geometry. This is a general feature as we will see in other

examples. The polygon in the fiber parameterized by the anomalous charges nicely matches

the shape of the blown-up cycle in the pq-web.

We can now refine the decomposition (5.15) by introducing the anomalous charges.

We first write the expansion (5.18) in the form

Zaux(t, a1, a2; C
3/Z3) =

∞
∑

β=0





∑

K∈C(β)

aK1
1 aK2

2



 tβ

where the two-dimensional index K = (K1,K2) runs over the points of the hollow triangle

C(β).

6Generically, Σ3 is a Lens space.

– 26 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
2

A1

A2

Figure 5: The hollow triangle C(4) above R = 4, i. e. the terms containing t4. It gives the

multiplicity 4 × 3 = 12.

Figure 6: The pq-web of C3/Z3. The blown-up four-cycle is associated to the triangle in the

middle.

We can then refine the decomposition (5.15) by replacing the multiplicity m(β) with
∑

K∈C(β) aK1
1 aK2

2 ,

g1(t1, t2, t3, a1, a2) =

∞
∑

β=0

(

∑

K∈C(β)

aK1
1 aK2

2

)

g1,β(t1, t2, t3). (5.19)

By explicit computation we can resum the previous series and compare with the ex-

pected field theory result, finding perfect agreement. The left hand side of formula (5.19) is

indeed the N = 1 generating function depending on all the five chemical potentials, which

can be computed as the Hilbert series for the polynomial ring, equation (5.8) using the

grading in table 2,

g1(t1, t2, t3, a1, a2; C
3/Z3) =

P (t1, t2, t3, a1, a2)
(

1− t1
a2
2

)(

1− a2t1
a1

)

(1−a1a2t1)
(

1− t2
a2
2

)(

1− a2t2
a1

)

(1−a1a2t2)
(

1− t3
a2
2

)(

1− a2t3
a1

)

(1−a1a2t3)

(5.20)
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where P (t1, t2, t3, a1, a2) is a polynomial in the gauge theory chemical potentials

P (t1, t2, t3, a1, a2) = 1 −
t1t2
a1a2

−
a1t1t2

a2
− a2

2t1t2 + t21t2 + t1t
2
2 −

t1t3
a1a2

−
a1t1t3

a2
− a2

2t1t3

+t21t3 −
t2t3
a1a2

−
a1t2t3

a2
− a2

2t2t3 + 4t1t2t3 +
t1t2t3

a2
1

+ a2
1t1t2t3

+
t1t2t3
a1a

3
2

+
a1t1t2t3

a3
2

+
a3

2t1t2t3
a1

+ a1a
3
2t1t2t3 −

t21t2t3
a2

2

−
a2t

2
1t2t3
a1

−a1a2t
2
1t2t3 + t22t3 −

t1t
2
2t3

a2
2

−
a2t1t

2
2t3

a1
− a1a2t1t

2
2t3 + t1t

2
3 + t2t

2
3

−
t1t2t

2
3

a2
2

−
a2t1t2t

2
3

a1
− a1a2t1t2t

2
3 + t21t

2
2t

2
3 (5.21)

We would like to stress that decomposition (5.19) is highly nontrivial. The right hand

side has been computed from the geometrical localization formulae and the refined GKZ

auxiliary generating function. It is then remarkable that the sum on the right hand side

coincides with the field theory N = 1 generating function.

Using equations (5.11) and (5.18) we get the following simpler expression

g1(t1, t2, t3, a1, a2; C
3/Z3) =

1

(1 − t1a1a2)
(

1 − t1a2
a1

) (

1 − t1
a2
2

)(

1 − t2
t1

)

(1 − t3/t1)
(5.22)

+
1

(1−t1/t2)(1−t2a1a2)(1−t2a2/a1)(1−t2/a2
2)(1−t3/t2)

+
1

(1−t1/t3)(1−t2/t3)(1−t3a1a2)(1−t3a2/a1)(1−t3/a
2
2)

.

The previous formula suggests the existence of a localization formula for the holomor-

phic functions on the N = 1 moduli space, which is a five-dimensional variety with an

action of five U(1) symmetries, three flavor plus two baryonic.

By projecting the refined GKZ expansion on the plane (A1, A2) we would get the

expansion of the N = 1 generating functions into sectors with definite baryonic charge.

The same result can be obtained by expanding g1 in a Laurent series by means of the

residue theorem. It is easy to check that the multiplicity of each sector is one.

5.2.5 Generating functions for N > 1

The generating function gN is now obtained from the general formula (2.2) starting from

any decomposition of the N = 1 generating function, the GKZ decomposition (5.15), the

refined GKZ decomposition (5.19) or the anomalous baryonic charge decomposition. Since

we are interested in writing generating functions depending on the non-anomalous charges,

at the end of the computation ai should be set to one.

The more economical way of obtaining gN is to start from decomposition (5.15). The

generating function for N D-branes is now given by the plethystic exponentiation

∞
∑

N=0

gN (t1, t2, t3)ν
N = PEν [g1,0(t1, t2, t3)] +

∞
∑

β=1

3βPEν [g1,β(t1, t2, t3)] (5.23)
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(0,1,1)

(1,0,1)(−1,0,1)

(0,−1,1)

4 3

21

C

B

A

D

Figure 7: Quiver and toric diagram for F0.

The cases N = 2 and N = 3 (with only one charge t) are given by

g2(t, t, t)=
1+t+13t2+20t3+53t4+92t5+137t6+134t7+146t8+103t9+55t10+19t11+9t12

(1 − t)8(1 + t)6(1 + t + t2)3

g3(t, t, t) =

1+32t3+394t6+2365t9+7343t12+12946t15+13201t18+7709t21+2314t24+276t27+3t30

(1 − t3)11(1 + t3)3

Taking the Plethystic Logarithm for these expressions we find 9 generators for N = 1,

18 baryonic and 10 mesonic for N = 2, 30 baryonic and 10 mesonic for N = 3, 45 baryonic,

10 mesonic of R charge 2, 28 mesonic of R charge 4 for N = 4, etc. By taking the order of

the pole at t = 1 we find the dimension of the moduli space is 3N + 2. All of this agrees

with the field theory expectations.

5.3 Generating functions for F0

F0, a Z2 freely acting orbifold of the conifold, has a quiver and the toric diagram given in

figure 7. The quiver gauge theory has four types of fields A,B,C,D. The superpotential

is ǫijǫpqAiBpCjDq.

Symmetries and geometry. Including flavor charges, we find a rank six global sym-

metry denoted by SU(2)1 × SU(2)2 × U(1)R × U(1)B × U(1)A1 × U(1)A2 . The basic fields

have transformation rules under the global symmetry which are summarized in table 3.

We can explicitly examine the geometry of F0. To this purpose, since d = 4, we

introduce four homogeneous coordinates xi in C
4. As in section 4.2 we define the group of

rescalings
∏4

j=1 µ
〈ei,Vj〉
j = 1 which consists of a continuous charge acting as (b, 1/b, b, 1/b)

on the xi and of a discrete one (1, e, 1, e) with e2 = 1. This implies that the manifold, as

we know, is a Z2 quotient of the conifold

R(C) = C[x1, x2, x3, x4]/(x1x2 − x3x4); R(F0) = R(C)/Z2 (5.24)

The homogeneous charges xi can be represented by chemical potentials as

(x1, x2, x3, x4) −→ (t1x, et2y, t1/x, et2/y)
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field F1 F2 R B A1 A2 chemical non-anomalous

potentials chemical potentials

A1
1
2 0 1

2 1 1 0 tbxa1 t1x = tbx

A2 − 1
2 0 1

2 1 1 0 tba1

x
t1
x

= tb
x

B1 0 1
2

1
2 −1 0 1 tya2

b
t2y = ty

b

B2 0 − 1
2

1
2 −1 0 1 ta2

by
t2
y

= t
by

C1
1
2 0 1

2 1 −1 0 tbx
a1

t1x = tbx

C2 − 1
2 0 1

2 1 −1 0 tb
xa1

t1
x

= tb
x

D1 0 1
2

1
2 −1 0 −1 ty

ba2

t2y = ty
b

D2 0 − 1
2

1
2 −1 0 −1 t

bya2

t2
y

= t
by

Table 3: Global charges for the basic fields of the quiver gauge theory living on the D-brane

probing the CY with F0 base.

in terms of the discrete baryonic charge e and the chemical potentials ti and x, y; notations

are inherited from original conifold theory. For future reference, we notice that the right

basis for localization is given by qi =
∏4

j=1 x
〈ei,Vj〉
j and we compute q1 = x2, q2 = y2, q3 =

t21t
2
2.

5.3.1 The N = 1 generating function

The F terms of the theory read:

A1BiC2 = A2BiC1 , B1CiD2 = B2CiD1 ,

C1DiA2 = C2DiA1 , D1AiB2 = D2AiB1.

For N = 1, the elementary fields are commuting numbers and in each equation a field

factorizes. For example, the first equation reduces to Bi(A1C2 −A2C1) = 0. This implies

that the N = 1 moduli space is reducible to few different branches. At a generic point

where all the fields are different from zero, we can divide by the common factor and the

F-term equations reduce to

A1C2 = A2C1 , B1D2 = B2D1.

However, over the submanifold Bi = Di = 0 the constraint A1C2 = A2C1 cannot be

imposed and the dimension of the moduli space increases by one unit. The same applies

for the constraint B1D2 = B2D1 over the submanifold Ai = Ci = 0.

This means that the moduli space is not irreducible and over particular submanifolds

new branches are opening up. This is similar to what happens with the Coulomb branch

of N = 2 supersymmetric gauge theories.

We decide to study the irreducible components of the moduli space which contains the

generic point with all fields different from zero. Algebraically, this is obtained by taking

the closure of the open set A,B,C,D 6= 0. We will see that the geometry of the CY nicely

captures this branch of the moduli space. The other branches can be added by performing

surgeries as in [10]. The N = 1 generating function of the generic branch is given by the
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Figure 8: GKZ decomposition for F0 with multiplicities.

Hilbert series of the polynomial ring

RN=1(F0) = C[Ai,Bi,Ci,Di]/(A1C2 − A2C1, B1D2 − B2D1) (5.25)

In order to simplify expressions, we first set to 1 all chemical potentials in table 3 except

for t1 and t2. The Hilbert series is then easily computed by observing that equation (5.25)

is a polynomial ring which is a complete intersection,

g1(t1, t2; F0) =
(1 − t21)(1 − t22)

(1 − t1)4(1 − t2)4
(5.26)

By taking order of the pole at t1 = t2 = t = 1 we find the dimension of the moduli space

to be 6; this can be easily understood by having three mesonic directions (parameterizing

the CY) plus three baryonic directions given by the gauge theory FI terms, consistent with

a dimension formula of 3N + G − 1.

5.3.2 The GKZ decomposition.

On the singular cone, there is just one independent divisor D1 = D3 = −D2 = −D4 as for

the conifold. On the resolution, there is a new divisor D5 corresponding to the internal

point. D1 = D3 and D2 = D4 are still true but now D1 and −D2 are different. We can

parametrize the GKZ fan in R
2 with βD1 + β′D2. The integer parameters β and β′ have

the interpretation as the discrete Kähler parameters of F0, namely the discrete areas of

the two P 1’s. In this case, the convexity condition requires β, β′ ≥ 0. The GKZ cone is

depicted in figure 8 and the multiplicities are presented in equation (5.32). Notice that

the QFT baryonic charge is given by B = β − β′, so the sector β′ < β corresponds to the

positive baryonic charges and the sector β′ > β corresponds to the negative ones.

It is interesting to note that the line β′ = β contains the sectors with zero baryonic

charge. It is not however true that operators with zero baryonic charges are made with
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traces; this is only true for β = β′ = 0. The other sectors on the line β′ = β correspond to

determinants of the form (detAdetB)n.

Localization now gives (using the complete set of charges (t1x, t2y, t1/x, t2/y))

g1,β,β′(t1, t2, x, y; F0)=
tβ1 tβ

′

2 x−βy−β′

(1−x2)
(

1−
t21t22
x2y2

)

(1−y2)
+

tβ1 tβ
′

2 xβy−β′

(1−1/x2)(1−t21t
2
2x

2/y2)(1−y2)
(5.27)

+
tβ1 tβ

′

2 x−βyβ′

(1−x2)(1−t21t
2
2y

2/x2)(1−1/y2)
+

tβ1 tβ
′

2 xβyβ′

(1−1/x2)(1−t21t
2
2x

2y2)(1−1/y2)

The dependence on the baryonic charge can be obtained by replacing t1 → tb and

t2 → t/b and, as expected, is given by a multiplicative factor

g1,β,β′(t1, t2, x, y; F0) = bβ−β′

ĝ1,β,β′(t, x, y; F0).

The generating function for x, y = 1 can be nicely written as

g1,β,β′(t1, t2; F0) =

∞
∑

n=0

(2n + 1 + β)(2n + 1 + β′)t2n+β
1 t2n+β′

2 (5.28)

It is then obvious that, for example, the mesonic partition function g1,0,0 can be ob-

tained from the mesonic partition function for the conifold [50, 6] by projecting on the Z2

invariant part (t2 → −t2).

5.3.3 Multiplicities

To extract multiplicities we use the auxiliary partition function for the GKZ cone. We

introduce letters a, b, c, d for the four possible classes of arrows. The only relation that

they form is related to the closed loop abcd. The generating function is the Hilbert series

of the polynomial ring

RGKZ(F0) = C[a, b, c, d]/(abcd) (5.29)

By assigning chemical potential t1 to a, c and t2 to b, d we obtain the auxiliary GKZ

partition function for multiplicities:

Zaux(t1, t2; F0) =
1 − t21t

2
2

(1 − t1)2(1 − t2)2
(5.30)

= 1 +

∞
∑

β=1

(β + 1)tβ1 +

∞
∑

β′=1

(β′ + 1)tβ
′

2 +

∞
∑

β=1

∞
∑

β′=1

2(β + β′)tβ1 tβ
′

2

From which we can extract the following multiplicities, 2(β + β′) for β, β′ ≥ 1, β + 1

for β′ = 0, and β′ + 1 for β = 0.

We thus have

g1({ti}; F0) = g1,0,0 +

∞
∑

β=1

(β + 1)g1,β,0 +

∞
∑

β′=1

(β′ + 1)g1,0,β′ +

∞
∑

β,β′=1

2(β + β′)g1,β,β′ (5.31)

and one computes, using equation (5.28),

g1(t1, t2; F0) =
(1 − t21)(1 − t22)

(1 − t1)4(1 − t2)4

which is exactly equation (5.26).
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Figure 9: The hollow rectangle C(4, 4) above (β, β′) = (4, 4). It gives the multiplicity 16.

5.3.4 Refining the GKZ decomposition

The auxiliary partition function in equation (5.30) is derived by computing the Hilbert

series of the GKZ ring in equation (5.29). By expanding this partition function we get

multiplicities in the (β, β′) lattice given by the following infinite matrix,
























1 2 3 4 5 6

2 4 6 8 10 12

3 6 8 10 12 14 . . .

4 8 10 12 14 16

5 10 12 14 16 18

6 12 14 16 18 20
...

. . .

























. (5.32)

In order to avoid getting multiplicities, let us introduce the chemical potentials for the

anomalous charges given in table 3. Using Macaulay2, or the fact that we are dealing with

a complete intersection, we can write the auxiliary partition function dressed with these

new charges as

Zaux(t1, t2, a1, a2; F0) =
1 − t21t

2
2

(1 − t1a1)(1 − t1/a1)(1 − t2a2)(1 − t2/a2)
(5.33)

By expanding this function, we see that above each point in the GKZ fan, parametrized

by (β, β′), there is a rectangle C(β, β′) in the (A1, A2) lattice as in figure 9. The related

rectangle in the pq-web is shown in figure 10.

We can thus refine our decomposition of the N = 1 partition function. Equation (5.31)

can be replaced by the following formula where all multiplicities are lifted:

g1(t1, t2, a1, a2) =

∞
∑

β=0,β′=0





∑

K∈C(β,β′)

aK1
1 aK2

2



 g1,β,β′(t1, t2). (5.34)
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Figure 10: The pq-web of F0. The blown-up four-cycle is associated to the square in the middle.

One can explicitely resum the right hand side, computed from geometrical data and the

auxiliary GKZ generating functions, and compare it with the N = 1 generating function

as computed by field theory. By resumming the series in equation (5.34) we indeed recover

the the generating function for N = 1 with all anomalous and non-anomalous charges;

this is given by the Hilbert series for the polynomial ring of equation (5.25) and is easily

computed using the fact that we deal with a complete intersection,

g1(x, y, t, b, a1, a2; F0) = (5.35)
(

1 − t2

b2

)

(1 − b2t2)
(

1 − bt
a1x

) (

1 − a1bt
x

) (

1 − btx
a1

)

(1 − a1btx)
(

1 − t
a2by

) (

1 − a2t
by

)(

1 − ty
a2b

)

(

1 − a2ty
b

)

For completeness we can rewrite this expression by summing using equations (5.27)

and (5.33),

g1(x, y, t, b, a1, a2; F0) =
1

(1−x2)(1−t1a1/x)
(

1− t1
xa1

)

(1−t2a2/y)
(

1− t2
ya2

)

(1−y2)
(5.36)

+
1

(1−1/x2)(1−t1xa1)(1−t1x/a1)(1−t2a2/y)(1−t2/ya2)(1−y2)

+
1

(1−x2)(1−t1a1/x)(1−t1/xa1)(1−t2ya2)(1−t2y/a2)(1−1/y2)

+
1

(

1− 1
x2

)

(1−t1xa1)(1−t1x/a1)(1−t2ya2)(1−t2y/a2)(1−1/y2)
.

This formula suggests that some localization is at work in the field theory N = 1

moduli space, which is a six dimensional variety with the action of six U(1) flavor and

baryonic symmetries.

5.3.5 Expansion in baryonic charges

Equation (5.26) can be refined by including the two anomalous chemical potentials a1 and

a2,

g1(t1, t2, a1, a2; F0) =
(1 − t21)(1 − t22)

(1 − t1a1)2
(

1 − t1
a1

)2
(1 − t2a2)2

(

1 − t2
a2

)2 (5.37)
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and by using residue formulae we can expand in terms of generating functions with fixed

anomalous baryonic charges,

g1,A1,A2(t1, t2; F0) =
t
|A1|
1 t

|A2|
2 [1 + t21 + |A1|(1 − t21)][1 + t22 + |A2|(1 − t22)]

(1 − t21)
2(1 − t22)

2
(5.38)

More generally, we can make explicit the dependence of the N = 1 generating function

on the full set of baryonic charges

g1(t, b, a1, a2; F0) =
(1 − t2b2)

(

1 − t2

b2

)

(1 − tba1)2
(

1 − tb
a1

)2
(

1 − ta2
b

)2
(

1 − t
ba2

)2 (5.39)

which can be expanded in sectors with definite baryonic charges. A contour integral argu-

ment gives the following generating functions for 1 D-brane and for fixed baryonic charges

g1,B,A1,A2(t; F0)=
1+(−1)B+A1+A2

2(1 − t4)3



















































































t−B−2A1 [1+6t4+t8−(B+2A1)(1−t8)+

+(A2
1+BA1)(1−t4)2] A1 ≤ 0, |A2| ≤ −B−A1

t−B+2A1 [1+6t4+t8−(B−2A1)(1−t8)+

+(A2
1−BA1)(1−t4)2] A1 ≥ 0, |A2| ≤ −B+A1

tB−2A2 [1+6t4+t8+(B−2A2)(1−t8)+

+(A2
2−BA2)(1−t4)2] A2 ≤ 0, |A1| ≤ B−A2

tB+2A2 [1+6t4+t8+(B+2A2)(1−t8)+

+(A2
2+BA2)(1−t4)2] A2 ≥ 0, |A1| ≤ B+A2

(5.40)

The same result can be obtained by projecting the decomposition of the N = 1 gen-

erating function on the refined GKZ lattice on the three dimensional space containing the

three baryonic charges. This is done by projecting the two GKZ coordinates (β, β′) to

the baryonic charge B = β − β′ and keeping fixed the two anomalous charges A1 and A2,

restricted to the conditions −β ≤ A1 ≤ β and −β′ ≤ A2 ≤ β′.

5.3.6 Generating functions for N > 1

As before the higher N generating function gN is given by the plethystic exponentiation

using formula (2.2). We can start from any decomposition of the N = 1 generating function,

the GKZ decomposition (5.31), the refined GKZ decomposition (5.34) or the expansion in

baryonic charges (5.40). Using the GKZ decomposition we have

∞
∑

N=0

gN ({ti}; F0)ν
N = PEν [g1,0,0] +

∞
∑

β=1

(β + 1)PEν [g1,β,0] (5.41)

+

∞
∑

β′=1

(β′ + 1)PEν [g1,0,β′ ] +

∞
∑

β=1

∞
∑

β′=1

2(β + β′)PEν [g1,β,β′ ]
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From which we can compute the generating function for N = 2

g2(t1, t2) =
F (t1, t2)

(1 − t21)
4(1 − t21t

2
2)

3(1 − t22)
4

F (t1, t2) = 1 + 2t22 + t81t
4
2(−6 + 8t22 + 17t42 + 2t62) + t21(2 + 14t22 + 8t42 − 3t62)

−t61t
2
2(3 + 20t22 + 10t42 − 8t62 − t82) + t101 (t62 + 2t82) − t41(−8t22 + 6t42 + 20t62 + 6t82)

Taking the plethystic logarithm of the generating functions for F0, it is possible to find

the generators of the moduli space. For N = 1 the plethystic logarithm of (5.26) is very

simple:

(4t1 + 4t2) −
(

t21 + t22
)

and it correctly reproduces the 8 chiral field generators and the two relations among them.

For N = 1 the moduli space is a complete intersection, and this is reflected by the fact

that the plethystic logarithm has a finite number of terms. In the N = 2 case there are

12 baryonic generators and 13 mesonic ones and the moduli space is no more a complete

intersection. By looking at the order of the pole for the computed generating functions near

t1 = t2 = t = 1, we checked that the dimension of the moduli space is 3N+G−1 as expected.

5.4 Counting in 1
2F0 and in 3

4F0

We can also consider, as was done for the conifold in [12], ficticious theories counting

subsets of the BPS chiral operators.

The half F0 corresponds to considering only the BPS operators containing

A1,B1,C1,D1 and no occurences of the other four elementary fields. This is done by

truncating equation (5.28) for g1,β,β′

g1,β,β′ =
∞
∑

n=0

t2n+β
1 t2n+β′

2 (5.42)

We easily obtain the generating functions for N = 1, 2,

g1

(

t1, t2;
1

2
F0

)

=
1

(1 − t1)2(1 − t2)2

g2

(

t1, t2;
1

2
F0

)

=
1

(1 − t21)
2(1 − t21t

2
2)(1 − t22)

2
(5.43)

Moreover, by generalizing arguments given in [12] for the 1/2 conifold, it is easy to

write a formula for generic N

gN

(

t1, t2;
1

2
F0

)

=
1

(1 − tN1 )2(1 − tN2 )2

N−1
∏

i=1

1

1 − t2i
1 t2i

2

(5.44)

which is interpreted as the fact that the ring of invariants is freely generated by four

determinants detA1,detB1,detC1,detD1 and N − 1 mesons Tr(A1B1C1D1)
i with i =

1, . . . , N−1. This can be understood easily from the absence of nontrivial F term conditions

and the fact that all baryons factorize into an alementary determinant times mesons.
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Figure 11: Quiver and toric diagram for dP1.

The 3
4F0 corresponds to considering only the BPS operators containing A1,B1,C1,D1

and A2,C2 and no occurences of the other two elementary fields. This is done by taking

g1,β,β′ =

∞
∑

n=0

(2n + 1 + β)t2n+β
1 t2n+β′

2 . (5.45)

Using the same multiplicities as in equation (5.31) we obtain

g1

(

t1, t2;
3

4
F0

)

=
1 + t1

(1 − t1)3(1 − t2)2

g2

(

t1, t2;
3

4
F0

)

=
(1 + t21t

2
2)(1 + 2t21 + 2t41t

2
2 + t61t

2
2)

(1 − t21)
4(1 − t21t

2
2)

2(1 − t22)
2

(5.46)

5.5 Generating functions for del Pezzo 1

The quiver and the toric diagram are depicted in figures 11 and 12.

Including flavor charges, we find a rank six global symmetry denoted by SU(2)×U(1)F×

U(1)R0 ×U(1)B×U(1)A1 ×U(1)A2 . R0 is not the R-symmetry of the superconformal theory

but rather a more convenient parametrization of the fields for the purpose of the counting

problem. It counts the fields in way such that if the dP1 theory is Higgsed down to the

C
3/Z3 theory by giving a vev to the Z field, then R0 measures the R-symmetry of this

resulting theory. The basic fields have transformation rules under the global symmetry

which are summarized in table 4.

5.5.1 The N = 1 generating function

The polynomial ring for the N = 1 moduli space is

RN=1(dP1) = C[Y1,Y2,Y3,Z,U1,U2, Ũ1, Ũ2,V1,V2]/{∂W = 0} (5.47)

where W = ǫabY1VaŨb + ǫabY3UaVb + ǫabY2ŨaZUb.
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field SU(2) F R0 B A1 A2 chemical non-anomalous GKZ

potentials ch. potentials letters

U1
1
2

0 2
3

−2 1 0 tx

b2
a1 x2 = tx

b2
d

U2 − 1
2

0 2
3

−2 1 0 t

xb2
a1 x4 = t

xb2
d

Ũ1
1
2

0 2
3

−2 −1 0 tx

b2a1

x2 = tx

b2
b

Ũ2 − 1
2

0 2
3

−2 −1 0 t

xb2a1

x4 = t

xb2
b

V1
1
2

−1 2
3

1 0 −1 tbx

ya2

x1x2 = tbx

y
a

V2 − 1
2

−1 2
3

1 0 −1 tb

xya2
x1x4 = tb

xy
a

Y1 0 1 2
3

1 1 1 tbya1a2 x3 = tby f

Y2 0 1 2
3

1 0 −1 tby

a2
x3 = tby a

Y3 0 1 2
3

1 −1 1 tbya2

a1
x3 = tby e

Z 0 −1 0 3 0 1 b3a2

y
x1 = b3

y
c

Table 4: Global charges for the basic fields of the quiver gauge theory living on the D-brane

probing the CY with dP1 base.

There are 10 different F-term equations. Consider in particular the equations for Z

and Y2

ǫabŨaZUb = 0 ǫabUbY2Ũa = 0 (5.48)

The fact that we can factorize a field in each of these equations implies that the moduli

space of vacua is not irreducible. Over the submanifold Z = Y2 = 0 the dimension of the

moduli space increases by one unit.

Instead of the two conditions (5.48) we will impose the simpler condition

ǫabŨaUb = 0. (5.49)

As in the F0 example, this means that we are considering one irreducible component of the

moduli space, which is the closure of the open set Z,Y2 6= 0. This is the branch that is

nicely described by the CY geometry.

We give chemical potentials to the fields using four homogeneous coordinates xi as in

table 4 as described in [35, 55]. With these weights we can compute the Hilbert series for

the graded ring, equation (5.47), by using Macaulay2 and obtain the N = 1 generating

function g1(xi),

g1({xi}; dP1) =
Q(xi)

(1 − x1)(1 − x2)2(1 − x1x2)(1 − x3)3(1 − x4)2(1 − x1x4)
(5.50)

where

Q(xi) = 1 − x2x3 − 2x1x2x3 + x1x
2
2x3 + x1x2x

3
3 − x2x4 − 2x1x2x4 + x1x

2
2x4 − x3x4

−2x1x3x4+2x2x3x4+6x1x2x3x4+2x2
1x2x3x4−2x1x

2
2x3x4−x2

1x
2
2x3x4+x1x

2
3x4

−2x1x2x
2
3x4−x2

1x2x
2
3x4+x1x2x

2
4+x1x3x

2
4−2x1x2x3x

2
4−x2

1x2x3x
2
4+x2

1x
2
2x

2
3x

2
4

Looking at the order of the pole at x1 = x2 = x3 = x4 → 1 we find that the dimension

of the moduli space is 6, in agreement with our general formula 3N + G − 1.
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D1

D2

D3

D4

I

II

(0,0,1)III

IV (1,0,1)

(0,1,1)

(−1,0,1)

(1,−1,1)

D1

D3

D4

D2

β’β D3   +     D2

R2

R1

(0,0,1)III

IV (1,0,1)

(0,1,1)

(−1,0,1)

(1,−1,1)

III

R1 R2

Figure 12: The two resolutions, the quiver and GKZ decomposition for dP1.

5.5.2 The GKZ decomposition.

The GKZ fan for dP1 is depicted in figure 12. Including the internal points we have five

divisors Di subject to the equivalence relations D2 = D4, D5 = −D2−2D3, D1 = D3−D2.

This leaves a I + d− 3 = 2-dimensional space of Kähler parameters, which we can identify

with the plane D2, D3. We have

5
∑

i=1

aiDi = (a3 + a1 − 2a5)D3 + (a2 − a1 + a4 − a5)D2 ≡ βD3 + β′D2 (5.51)

Even if ai ≥ 0, β and β′ can be negative. There are two smooth resolutions R1 and

R2. Assign the number β to the vertex D3 and β′ to the vertex D2 of the toric diagram,

and zero to all other vertices. The convexity conditions for R1 give β, β′ ≥ 0 and the

conditions for R2 give β ≥ 0, β′ ≤ 0, β + β′ ≥ 0. These two sets of conditions determine

the two adjacent cones in the GKZ decomposition. Notice that the three boundary lines

can be associated naturally with the directions D2, D3 and D1 = D3 − D2. We go from

R1 to R2 with a flop.

Collecting this together and using equation (4.8) we obtain

gR1
1,β,β′(xi) =

xβ′

2 xβ
3

(1−x1x2/x3)(1−x2x2
3)(1−x4/x2)

+
xβ

3xβ′

4

(1−x2/x4)(1−x1x4/x3)(1−x2
3x4)

+
xβ+β′

4 xβ
1

(1−x2/x4)(1−x3/x1x4)(1−x3
4x

2
1)

+
xβ

1xβ+β′

2

(1−x2
1x

3
2)(1−x3/x1x2)(1−x4/x2)

gR2
1,β,β′(xi) =

xβ−2β′

3

(1−x1/x
3
3)(1−x2x

2
3)(1−x2

3x4)
+

x−β′

1 xβ+β′

3

(1−x1x2/x3)(1−x3
3/x1)(1−x1x4/x3)

+
xβ

1xβ+β′

4

(1−x2/x4)(1−x3/x1x4)(1−x3
4x

2
1)

+
xβ

1xβ+β′

2

(1−x2
1x

3
2)(1−x3/x1x2)(1−x4/x2)

(5.52)

5.5.3 Multiplicities

We determine multiplicities using the auxiliary partition functions for the GKZ cone. We

have six different equivalence classes of fields a, b, c, d, e, f corresponding to the fields as in
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table 4. The relations are

I = {abcd, afd, abe, cd, bc, eaf, fd − be}

The first three relations correspond to closed loops in the quiver, the composition of arrows

cd, bc and eaf are equivalent to the e,f and c respectively and should be set to zero in

order to avoid overcounting and, finally, fd and be are identified since they have the same

starting and ending point. Not all the relations are independent.

We can assign charges to the letters a, b, c . . . by considering their representative in

terms of elementary fields and using the homogeneous charge assignment given in table 4.

In the GKZ plane we want to use the charges x2 and x3 associated with D2 and D3.

The restriction to the GKZ plane requires using the equivalence relations D4 = D2 and

D1 = D3 −D2 that translate to the restriction to x4 = x2 and x1 = x3/x2. We thus obtain

the assignment

{a, b, c, d, e, f} −→ {x3, x2, x3/x2, x2, x3, x3}. (5.53)

Using Macaulay2 to compute the Hilbert series for the polynomial ring

RGKZ(dP1) = C[a, b, c, d, e, f ]/I (5.54)

we obtain the auxiliary GKZ partition function7

Zaux(x2, x3; dP1) =
1 − x2

3x2

(1 − x3)(1 − x3/x2)(1 − x2)2
=

∑

β,β′

m(β, β′)xβ
3xβ′

2 (5.55)

which is expanded in power series for x3 < 1, x2 < 1, x3/x2 < 1. It exactly fills the regions

R1 and R2 of the GKZ fan. We can also extract the multiplicities: in the internal points

of region R1 m(β, β′) = 3β + 2β′, in the internal points of region R2 m(β, β′) = 3(β + β′);

at the origin m(0, 0) = 1, on the vertical axis m(0, β′) = β′ + 1, on the horizontal axis

m(β, 0) = 3β and finally on the diagonal m(β,−β) = 1.

The N = 1 generating function is a sum over the two GKZ regions:

g1({xi}) =
∑

β,β′∈R1

m(β, β′)gR1
1,β,β′(xi) +

∑

β,β′∈R2

m(β, β′)gR2
1,β,β′(xi) (5.56)

By resumming this formula, we obtain precisely equation (5.50).

5.5.4 Refinement of the GKZ Lattice

Now we add the anomalous charges according to table 4. Macaulay2 computes the GKZ

partition function to be

Zaux(x2, x3, a1, a2; dP1) =
1 − x2x

2
3

(

1 − x3a2
x2

)

(1 − x2a1)
(

1 − x2
a1

) (

1 − x3
a2

) (5.57)

7The auxiliary polynomial ring of equation (5.54) has in fact the same Hilbert series as for a simpler

polynomial ring C[a, b, c, d]/{abcd}.
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A2

A1

Figure 13: The hollow trapezoid above (β, β′) = (4, 3) which is in region R1. It gives the multi-

plicity 13.

A1

A2

Figure 14: The hollow triangle above (β, β′) = (6,−1) which is in region R2. It gives the multi-

plicity 9.

The expansion gives a hollow cone in the four dimensional (B,B′, A1, A2) lattice. In the

R1 region, we have a trapezoid CR1(β, β′) in the (A1, A2) lattice above a point in the GKZ

cone parameterized by (β, β′) (see figure 13). This degenerates to a triangle CR2(β, β′) as

we move to the R2 region (figure 14). This “explains” the m(β, β′) = 2β′+3β multiplicities.

The N = 1 decomposition in equation (5.56) can be refined to

g1(xi, a1, a2; dP1) =
∑

β,β′∈R1





∑

K∈CR1(β,β′)

aK1
1 aK2

2



 gR1
1,β,β′(xi) (5.58)

+
∑

β,β′∈R2





∑

K∈CR2(β,β′)

aK1
1 aK2

2



 gR2
1,β,β′(xi)
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R2

R1

Figure 15: The two cones (grey areas) of the dP1 GKZ fan. Above the points in R1 a trapezoid sits

in the fiber. The edge lengths are controlled by the position in the base. The trapezoid degenerates

to a triangle in the R2 region.

Figure 16: The pq-web of dP1. The blown-up four-cycle is associated to the trapezoid in the

middle.

where the generating function for N = 1 depending on all charges is:

g1(x1, x2, x3, x4, a1, a2; dP1) = (5.59)

Q(x1, x2, x3, x4, a1, a2)

(1−a2x1)
(

1− x2
a1

)

(1−a1x2)
(

1− x1x2
a2

)(

1− x3
a2

)(

1− a2x3
a1

)

(1−a1a2x3)
(

1− x4
a1

)

(1−a1x4)
(

1− x1x4
a2

)

where Q(x1, x2, x3, x4, a1, a2) is the polynomial:

Q(x1, x2, x3, x4, a1, a2) = 1−a2x2x3−
x1x2x3

a1
−a1x1x2x3+x1x

2
2x3+a2x1x2x

2
3−x2x4

−
x1x2x4

a1a2
−

a1x1x2x4

a2
+

x1x
2
2x4

a2
−a2x3x4−

x1x3x4

a1
−a1x1x3x4

+
a2x2x3x4

a1
+a1a2x2x3x4+4x1x2x3x4+

x1x2x3x4

a2
1

+a2
1x1x2x3x4

+
x2

1x2x3x4

a1a2
+

a1x
2
1x2x3x4

a2
−

x1x
2
2x3x4

a1
−a1x1x

2
2x3x4−

x2
1x

2
2x3x4

a2

+a2x1x
2
3x4−

a2x1x2x
2
3x4

a1
−a1a2x1x2x

2
3x4−x2

1x2x
2
3x4+

x1x2x
2
4

a2

+x1x3x
2
4−

x1x2x3x
2
4

a1
−a1x1x2x3x

2
4−

x2
1x2x3x

2
4

a2
+x2

1x
2
2x

2
3x

2
4 (5.60)
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This expression can be rewritten in a more symmetric form by using equations (5.52)

and (5.57) and some algebraic manipulation,

g1(x1, x2, x3, x4, a1, a2; dP1) =
1

(1−x1a2)(1−x2a1)
(

1− x2
a1

)(

1− x1x2
a2

)(

1− x3
x1x2

)(

1− x4
x2

)

+
1

(

1− x1x2
x3

)(

1− x3a2
x2

)

(1−x2a1)
(

1− x2
a1

)(

1− x3
a2

)(

1− x4
x2

)

+
1

(

1− x2
x4

)(

1− x1x4
x3

)(

1− x3a2
x4

)

(1−x4a1)
(

1− x4
a1

)(

1− x3
a2

)

+
1

(

1− x2
x4

)(

1− x3
x1x4

)

(1−x1a2)(1−x4a1)
(

1− x4
a1

)(

1− x1x4
a2

)

+
1

(1−a2x1)
(

1− x2
a2x3

)(

1−x3
a2

)(

1−a2x3
a1

)

(1−a1a2x3)
(

1− x4
a2x3

) .

As for C
3/Z3 and F0, also the N = 1 generating function for dP1 can be written in a

form that recalls a localization formula for the N = 1 field theory moduli space, which is

a six dimensional variety acted by a total of six flavor and baryonic symmetries. It would

be interesting to investigate the general properties of the N = 1 moduli space varieties

and to see in particular whether these varieties are toric and the previous formulae can be

interpreted as a localization.

5.5.5 Generating functions for N > 1

The generating functions for N > 1 can be obtained as usual by plethystic exponentiation

and resummation over the points of the considered decomposition, according to the general

formula (2.2). Using the GKZ decomposition, with the multiplicities already obtained for

the N = 1 case, the generating functions for general N are given by:

∞
∑

N=0

gN ({xi})ν
N =

∑

β,β′∈R1

m1(β, β′)PEν [g
R1
1,β,β′(xi)] +

∑

β,β′∈R2

m2(β, β′)PEν [g
R2
1,β,β′(xi)]

(5.61)

For the case N = 2 we compute:

g2(t, b) =
F (t, b)

(b6 − 1) (b4 − t2)4 (b2t2 − 1)5 (t3 − 1)3 (b6t3 − 1)
(5.62)

F (t, b) = b8
(

t14
(

−t6+6t3+3
)

b22+t12
(

4t6−21t3−15
)

b20+t10
(

−2t12−6t9+5t6+3t3+32
)

b18

−t5
(

3t15−61t12+39t9−24t6+16t3+3
)

b16−t6
(

9t15−30t12+85t9+7t6−30t3+7
)

b14

+
(

−7t22−6t19+25t16−32t13+67t10−48t7+t4
)

b12

+t2
(

−5t18+64t15−91t12+48t9−29t6+6t3+7
)

b10

+
(

−t21+14t18−53t15+44t12+56t9−19t6+6t3+1
)

b8

+t4
(

3t15+15t12−17t9+24t6−48t3−1
)

b6+t2
(

4t15−44t12+9t9−9t6+6t3+2
)

b4

+t9
(

−4t6+27t3+9
)

b2+t7
(

t6−6t3−3
))

(5.63)
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We explicitly checked for the considered cases that the dimension of the moduli space,

equal to the order of the pole for the generating function when t and b approach 1, is

3N + G − 1 as expected.

The generators of the moduli space and their relations can be studied by computing

the plethystic logarithm of the generating functions. In the N = 1 case we checked that

the plethystic logarithm correctly reproduces the 10 chiral fields generators together with

their 9 F-term relations (recall that we get only one relation (5.49) from the two (5.48)).

The case N = 2 for dP1 is more interesting. The first terms in the expansion of the

plethystic logarithm of g2(t, b) in (5.62) are:

b6 +

(

6

b4
+ 12b2

)

t2 +
(

9 + b6
)

t3 − · · · (5.64)

The first positive terms can be matched with 29 generators of the moduli space for N = 2:

in fact at level t3 we find the 9 known mesons of dP1 (this matches with the number of

generators over the integers for the dual fan), and 20 baryonic generators. The baryonic

generators can be identified as follows:

b6 → (Z,Z) t3b6 → (Y1Y2Y3,Z)

6t2

b4
→ (U1,U1), (U1,U2), (U2,U2), (Ũ1, Ũ1), (Ũ1, Ũ2), (Ũ2, Ũ2)

12b2t2 →
(Y1,Y1), (Y2,Y2), (Y3,Y3), (V1,V1), (V1,V2), (V2,V2)

(Y2,V1), (Y2,V2), (ZU1,Y1), (ZU2,Y1), (Ũ1Z,Y3), (Ũ2Z,Y3)

where (X,Y) stands for the N = 2 color indices contraction: ǫi,jǫ
a,bXi

aY
j
b .

6. The Molien formula: checks for N > 1

The baryonic generating functions found in the previous sections can be checked against

an explicit field theory computation, at least for small values of N . The problem of finding

invariants under the action of a continuous group is the hearth of invariant theory and

goes back to the nineteenth century, as most of the concepts necessary for its solution,

like syzygies and free resolutions, all amenable to Hilbert. Modern advances, such as the

discovery of Groebner basis, gave an algorithmic way of solving such problems and the

advent of computer algebra programs made some computations really doable.

The generating functions for a fixed number of colors N can be reduced to a problem

for polynomial rings as follows. Consider an N = 1 supersymmetric gauge theory with F

elementary fields X and a gauge group G. Since we are discussing the chiral ring we can

replace G with its complexification Gc. For quiver theories, the elementary fields consist

of N × N matrices. Consider a polynomial ring in FN2 variables C[Xij] made with the

entries of these matrices. The F-terms give matrix relations whose entries are polynomial

equations. We can collect all the polynomial F-term equations in an ideal I and define the

quotient ring

R[Xij ] = C[Xij ]/I (6.1)
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The gauge group Gc and the global symmetry group act naturally on the ring and we can

grade the elements of R with gauge and global charges. Denoting with ti the global Abelian

charges and with zi the charges under the Cartan subgroup of the gauge group Gc, we can

write the generating function, or Hilbert series, of the graded ring R,

HR(t; z) =
∑

nm

anmzntm (6.2)

which can be arranged to be a power series in the global charges t and a Laurent expansion

in the gauge charges z. The full gauge group Gc acts on the quotient ring R and, since

the gauge symmetry commutes with the global symmetry, all the elements of R with

given charge tm form a (not necessarily irreducible) representation of Gc. Therefore, the

coefficient of tn in equation (6.2) is the character of a Gc representation,

HR(t; z) =
∞
∑

m=0

χm(z)tm =
∞
∑

m=0

(

∑

i

am
i χ(i)(z)

)

tm (6.3)

Here we have denoted with χ(i) the irreducible representations of Gc and decomposed

the representation on the elements of charge tm into irreducible ones. The generating func-

tion for invariants is given by the projection onto the trivial representation with character

χ(0) = 1,

H inv
R (t) =

∞
∑

m=0

am
0 tm (6.4)

The projection can be easily done by averaging H(t; z) on the gauge group with the

Weyl measure. The latter has indeed the property to keep only the contribution of the

trivial representation
∫

dµ(z)χ(i)(z) = δi,0 (6.5)

For a given group G with rank r we can explicitly write the measure as a multi-contour

integral

1

|W |

r
∏

j=1

∫

|zj |=1

dzj

2πizj

(

1 − zh(α)
)

(6.6)

where h(α) are the weights of the adjoint representation and |W | is the order of the Weyl

group. We finally get the Molien formula:

H inv
R (t) =

1

|W |

r
∏

j=1

∫

|zj |=1

dzj

2πizj

(

1 − zh(α)
)

HR(t; z) (6.7)

Since the multi-contour integrals can be evaluated with the residue theorem, the real

problem in using equation (6.7) is the determination of the integrand, that is the Hilbert

series of the quotient ring R. Fortunately, this is the kind of problems that modern com-

mutative algebra made algorithmic and that can be easily solved with computer algebra

programs. For example Macaulay2 naturally deals with polynomial rings and it has a build-

in command hilbertSeries. For moderate values of FN2, the computation takes fractions
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of second, but it can become too hard with a standard computer already at N = 3 and a

number of fields F of order 10. In these cases, one can still truncate the computation at a

maximum degree in t and get a sensible result.

It is worth mentioning that special care has to be taken when the moduli space is not

irreducible and at certain points in moduli space new branches are opening up. This is

the case for example for N = 2 theories that have additional Coulomb branches and was

treated in [10]. The general case that we want to address is the following. Suppose that

we have an N = 1 F-term equation where one of the elementary fields can be factorized:

X0F (X) = 0 where F (X) is a polynomial not containing X0. Considering the N = 1

moduli space as a fibration over the line parametrized by X0, we see that the dimension of

the fiber increases by one unit over X0 = 0: indeed, for X0 6= 0 we can impose the further

constraint F (X) = 0 which reduces by one the dimension of the fiber. This means that a

new branch opens up at X0 and the full moduli space is reducible. This is the case for F0

and dP1 as discussed above in detail. We may want to determine the generating function

for a given irreducible component of the moduli space, in particular the closure of the open

set X0 6= 0, or, for N > 1, of det(X0) 6= 0. This is done with a standard trick. Add a

new element q to the ring and a new equation, q det(X0) − 1 to the ideal I. Clearly, the

new equation prevents det(X0) from being zero. The irreducible component of the moduli

space we are interested in is obtained by projecting the variety defined by the new ideal

Ĩ = (I, q det(X0) − 1) on the space parameterized by the X,X0 and taking the closure.

This can be done by eliminating q from the ideal Ĩ. This defines the elimination ideal J

that can be computed with the Macaulay2 command eliminate. If we define

R[Xij ] = C[Xij]/J (6.8)

we can now proceed as before, compute the Hilbert series of this ring and project it onto

gauge invariants with the Molien formula. This would give us the generating function for

the particular irreducible component of the moduli space.

We now present some explicit examples based on the conifold and F0. The other cases

presented in this paper can be checked similarly, at least for small values of number of

fields, F , and number of D-branes, N . When N increases it is necessary to truncate the

series to a maximum degree.

6.1 Example: N = 2 for the conifold

The generating function of the conifold for N = 2 was explicitly computed in [12] and is

given in equation (3.4). For N = 2 we have four fields Ai,Bi that are two-by-two matrices,

whose entries we denote by apq
i , bpq

i . The four matrix F-term equations

A1BiA2 = A2BiA1 , B1AiB2 = B2AiB1

give rises to sixteen polynomial equations for the ap,q
i , bp,q

i which generates an ideal I

in the polynomial ring C[ap,q
i , bp,q

i ]. The element (g, ḡ) of the complexified gauge group

SL(2)×SL(2) acts on the matrices as Ai → gAiḡ
−1 and Bi → ḡBig

−1. All the entries ap,q
i
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and bp,q
i transform with a definite charge under the Cartan subgroup

g =

(

z 0

0 1/z

)

ḡ =

(

w 0

0 1/w

)

(6.9)

We further assign chemical potential t1 to the eight fields ap,q
i and chemical potential

t2 to the eight fields bp,q
i . The sixteen F-term constraints generating the ideal I transform

homogeneously under the gauge and global charges. We can thus grade the quotient ring

RN=2 = C[ap,q
i , bp,q

i ]/I (6.10)

with four charges, corresponding to chemical potentials, two gauge z,w and two global

t1, t2. The Hilbert series of RN=2 can be computed using Macaulay2

HR(t1, t2; z,w) =
P (t1, t2; z,w)

(1−t1zw)
(

1−t1
z
w

)(

1−t1
w
z

)(

1− t1
zw

)

(1−t2zw)
(

1−t2
z
w

)(

1−t2
w
z

)(

1− t2
zw

)

P (t1, t2; z,w) = 1+4t31t2+4t1t
3
2+6t21t

2
2+t41t

4
2 − 2(t2t

2
1+t1t

2
2+t22t

3
1+t21t

3
2)

(

w+
1

w

)(

z+
1

z

)

+t21t
2
2

(

w +
1

w

)2 (

z +
1

z

)2

(6.11)

The Molien formula now reads

g2(t1, t2; C) =

∫

|w|=1

dw(1 − w2)

2πiw

∫

|z|=1

dz(1 − z2)

2πiz
HR(t1, t2; z,w) (6.12)

Some attention should be paid in performing the contour integrals. Recall that HR

gives the generating function for the ring R when expanded in power series in t1 and in

t2 which are supposed to be complex numbers of modulus less than one. This should be

taken into account when performing the contour integrals on the unit circles |z| = |w| = 1.

For example, the first contour integration in z takes contribution only from the residues in

the points t1w, t1/w, t2w, t2/w lying inside the unit circle |z| = 1 (we take |ti| < 1, |w| = 1).

Similar arguments apply to the second integration. After performing the two integrals we

obtain

g2(t1, t2) =
1 + t1t2 + t21t

2
2 − 3t41t

2
2 − 3t21t

4
2 + t51t

3
2 + t31t

5
2 − 3t31t

3
2 + 4t41t

4
2

(1 − t21)
3(1 − t1t2)3(1 − t22)

3
, (6.13)

which perfectly coincides with equation (3.4).

6.2 Example: N = 1 and N = 2 for 3
4F0 - reducibility of the moduli space

We now consider an example where the moduli space is not irreducible. We consider the
3
4F0 case in order to limit the number of equations involved. The following discussion

applies to F0 and dP1 as well. For N = 1 we consider the polynomial ring

R = C[Ai,B1,Ci,D1]/I (6.14)
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with six variables. There are two F-term equations

I = (A1B1C2 = A2B1C1 ,C1D1A2 = C2D1A1 )

The Hilbert series for this polynomial ring is

HR(t1, t2) =
1 − 2t21t2 + t21t

2
2

(1 − t1)4(1 − t2)2
. (6.15)

As already discussed, the variety defined by I is not irreducible: we are interested in

the closure of the open set B1,D1 6= 0. We then define a new ideal by adding two new

variables q1, q2 to R,

R̃ = C[Ai,B1,Ci,D1, q1, q2]/Ĩ (6.16)

and two new generators to the ideal I

Ĩ = (I, q1B1 − 1, q2D1 − 1)

The closure of the open set B1,D1 6= 0 is obtained by eliminating q1 and q2. This can be

done in a polynomial way by using the Groebner basis and the algorithm is implemented

in Macaulay2 in the command eliminate. In our case the elimination ideal is just

J = (A1C2 − A2C1 )

and the Hilbert series of

R′ = C[Ai,B1,Ci,D1]/J (6.17)

is

HR′(t1, t2) =
1 + t1

(1 − t1)3(1 − t2)2

which indeed coincides with the g1(ti,
3
4F0) generating function given in equation (5.46).

The N = 2 generating function should be computed in a similar way. The fields

Ai,B1,Ci,D1 are now two-by-two matrices, for a total of 24 independent entries. The

ideal I now contains 8 polynomial equations, given by

Ĩ = (I, q1 detB1 − 1, q2 detD1 − 1),

and the elimination ideal J is obtained by eliminating q1 and q2. The Hilbert series

of J graded with the gauge charges is a rational function HR(t1, t2; z1, z2, z3, z4) whose

expression is too long to be reported here. Four integrations using the residue theorem

finally give the N = 2 generating function given in (5.46).

7. Conclusions

In this paper we have performed a further step in the understanding and the computation

of the generating functions for the chiral ring of the superconformal gauge theories living

on branes at CY singularities. We have reinforced the conjecture that the generating

functions for N colors can be computed simply in terms of the N = 1 generating functions
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through the plethystic program. We tested this conjecture, suggested by a computation

with D3-branes in the dual background, in field theory for small values of N . It would be

interesting to perform checks for large N as well as to investigate the statistical properties

of the resulting generating functions.

In particular we have made an explicit investigation of the properties of the complete

N = 1 generating function and we have compared the result with a geometrical compu-

tation. The emerging structure reveals once more the deep interplay between the quiver

gauge theory and the algebraic geometry of the CY. In particular we found an intriguing

relation between the decomposition of the N = 1 generating function in sector of given

baryonic charge and the discretized Kähler moduli space of the CY.

The geometrical structure of the complete moduli space for N colors, which is obtained

by the N -fold symmetrized product of the CY by adding the baryonic directons is still

poorly understood. We have seen that already for N = 1 the moduli space is rich and

interesting. We leave for future work the understanding of the geometric structure of these

moduli spaces.
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A. Singular N = 2 horizons

In this appendix we discuss the N = 2 supersymmetric theories obtained at orbifold sin-

gularities of the form C
2/Zn × C and we make some general observations about the cor-

responding generating functions. Since the factor C in the geometry factorizes, we can

immediately write the following expression,

g1

(

{ti}, t;
C

2

Zn
× C

)

=
1

1 − t
· g1({ti}; C

2/Zn) (A.1)

where t is a chemical potential for the C factor and ti a set of chemical potential for the

four dimensional singularity C
2/Zn. We count BPS operators on the Higgs branch of the

theory without including mixed Higgs-Coulomb branches.
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Figure 17: Quiver and toric diagram for C
2/Z2 × C.

A.1 C
2/Z2

The case of the CY singularity C
2/Z2 ×C was considered in detail in [12]. The theory has

N = 2 supersymmetry with two vector multiplets in the adjoint representation of SU(N)

and two bi-fundamental hypermultiplets. In N = 1 notation we have six chiral multiplets

denoted as φ1, φ2,A1,A2,B1,B2, with a superpotential

W = φ1(A1B1 − A2B2) + φ2(B2A2 − B1A1) (A.2)

Let us consider the N = 1 generating function, which is given by

g1

(

t1, t2, x;
C

2

Z2

)

=
1 − t1t2

(1 − t1x)
(

1 − t1
x

)

(1 − t2x)
(

1 − t2
x

) (A.3)

This function describes a three dimensional moduli space which is a complete intersection,

generated by four fields satisfying one F-term relation A1B1 = A2B2. We assign chemical

potential t1 = tb to Ai and t2 = t/b to Bi where b measures the baryonic charge. The

parameter x counts the difference between indices 1 and 2. Let us introduce two more

chemical potentials, q1 = tx and q2 = t/x. These potentials are natural conjugate variables

for the two coordinates of C
2. They count the number of fields which descend by the

orbifold action from the first (second) adjoint field, respectively.

Similarly to the conifold case, we can expand the N = 1 generating function in baryonic

charges

g1

(

t1, t2;
C

2

Z2

)

=
∞
∑

B=−∞

bBg1,B

(

t;
C

2

Z2

)

g1,B

(

t, x;
C

2

Z2

)

=
t|B|x|B|

(

1 − 1
x2

)

(1 − t2x2)
+

t|B|x−|B|

(1 − x2)
(

1 − t2

x2

) (A.4)

The same result can be obtained by localization and by using the auxiliary GKK parti-

tion function which reproduces two one-dimensional cones corresponding to the two Weyl

chambers of SU(2).

A.1.1 C
2/Z2 as sum over Young tableaux

The baryonic generating functions for C
2/Z2 can be given an interpretation as sum over

Young tableaux.

– 50 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
2

There is indeed an intriguing relation between the BPS partition functions for CY of

the form X × C and Nekrasov’s partition function for N = 2 U(1) gauge theories defined

on the surface X. The relation is defined by the following identity [72 – 74],

∞
∑

N=1

νNChH0(SN (X),O) = exp

(

∞
∑

k=1

νkg1,0(t
k
i ;X)

k

)

=
∏

I

Z(qI
1 , q

I
2 , ν; C2) (A.5)

In this identity, g1,0(ti) is the mesonic N = 1 generating function which is also the partition

function of holomorphic functions on X. The first equality in equation (A.5) is precisely

the statement that the mesonic BPS operators count holomorphic functions on the N -fold

symmetric product of X. The last equality follows from the computation of g1,0 in terms

of localization

g1,0 =
∑

I

1

(1 − qI
1)(1 − qI

2)
(A.6)

Here I labels the fixed points and (qI
1 , qI

2) are the weights for the T 2 action in a smooth

resolution of X. Since the g1,0 partition function decomposes as the sum over elementary

partition functions for copies of C
2, the last equality follows.

Equation (A.5) can be reinterpreted as the K-theory version of Nekrasov’s U(1) par-

tition function for the case of a surface X [74] and written in terms of Young tableaux.

Indeed the partition function for C
2 Z(q1, q2, ν; C

2) can be written as a sum over Young

tableaux

Z(q1, q2, ν; C2) =
∑

Y

ν |Y |

∏

s∈Y

(

1 − q
−l(s)
1 q

a(s)+1
2

) (

1 − q
1+l(s)
1

)(

1 − q
−a(s)
2

) (A.7)

There is a similar result for baryonic partition functions. Since we can write

g1,B =
∑

I

qI
0

(

1 − qI
1

) (

1 − qI
2

) (A.8)

we have the following expression,

exp

(

∞
∑

r=1

νrg1,B(tri ;X)

r

)

=

∞
∑

N=1

νNChH0(SN (X),O(B)) =
∏

I

Z
(

qI
1 , q

I
2 , νqI

0 ; C
2
)

. (A.9)

This expresses the generating function as an expansion in products of series over Young

tableaux. For the case of orbifolds, we expect that this simplifies to a sum over a single set

of tableaux as in [74].

The identity seems to be related to the blow-up formula of Nakajima [72] thus reen-

forcing the relation of the baryonic charge B with the Kähler modulus.

A.1.2 An expression for gN for C
2/Z2

Here we give a computation inspired by the previous discussion that may help in simplifying

the higher N generating functions.
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The generating function for 1 D-brane and baryonic charge B was computed to be

g1,B(q1, q2) =
q
|B|
1

(1 − q2
1)

(

1 − q2

q1

) +
q
|B|
2

(

1 − q1

q2

)

(1 − q2
2)

(A.10)

We can now take the Plethystic Exponential for this expression, keeping track of the

baryon number. The simplest way of doing this is to take PE[bBg1,B ]:

PE[bBg1,B ] = exp





∞
∑

k=1

νkbkBq
k|B|
1

k(1 − q2k
1 )

(

1 −
qk
2

qk
1

)



 exp





∞
∑

k=1

νkbkBq
k|B|
2

k
(

1 −
qk
1

qk
2

)

(1 − q2k
2 )



 (A.11)

This form of the equation can be compared with the generating function for the two

dimensional complex plane, C
2,

g(ν; t1, t2; C
2) = exp

( ∞
∑

k=1

νk

k(1 − tk1)(1 − tk2)

)

=

∞
∑

N=0

νNgN (t1, t2; C
2), (A.12)

to write an expression

PE[bBg1,B ] = g

(

νbBq
|B|
1 ; q2

1 ,
q2

q1
; C2

)

· g

(

νbBq
|B|
2 ;

q1

q2
, q2

2 ; C
2

)

, (A.13)

precisely as explained above. We can now use the expansion in the number of branes to

demonstrate that the baryon number dependence is simple,

PE[bBg1,B ] =
∞
∑

N1=0

νN1bBN1q
|B|N1

1 gN1

(

q2
1,

q2

q1
; C2

) ∞
∑

N2=0

νN2bBN2q
|B|N2

2 gN2

(

q1

q2
, q2

2; C
2

)

,

(A.14)

In order to perform the sum over all baryon numbers, we use the identity

∞
∑

B=−∞

bBt|B| =
1 − t2

(1 − tb)
(

1 − t
b

) (A.15)

and get

∞
∑

B=−∞

PE[bBg1,B ] =

∞
∑

N1=0

∞
∑

N2=0

νN1+N2
1 − q2N1

1 q2N2
2

[1 − (q1b)N1(q2b)N2 ][1 − ( q1

b
)N1( q2

b
)N2 ]

×

×gN1

(

q2
1,

q2

q1
; C2

)

gN2

(

q1

q2
, q2

2 ; C
2

)

. (A.16)

From this expression we can easily extract the generating function for a fixed N number

of D-branes,

gN

(

q1, q2, b;
C

2

Z2

)

=
∑

N1+N2=N

1 − q2N1
1 q2N2

2

[1 − (q1b)N1(q2b)N2 ][1 − ( q1

b
)N1( q2

b
)N2 ]

×

×gN1

(

q2
1 ,

q2

q1
; C2

)

gN2

(

q1

q2
, q2

2 ; C
2

)

. (A.17)
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Figure 18: Quiver and toric diagram for C2/Z3 × C.

By determining the first few terms for C
2 in the expansion (A.12),

g1

(

t1, t2; C
2
)

=
1

(1 − t1)(1 − t2)

g2

(

t1, t2; C
2
)

=
1 + t1t2

(1 − t1)(1 − t2)(1 − t21)(1 − t22)
, (A.18)

we are able to compute the generating functions for C
2/Z2 with the following results. For

N = 1 we obtain,

g1

(

q1, q2, b;
C

2

Z2

)

=
1

(1 − q1b)
(

1 − q1

b

)

(

1 − q2

q1

) +
1

(1 − q2b)
(

1 − q2

b

)

(

1 − q1

q2

) . (A.19)

For N = 2,

g2

(

q1, q2, b;
C

2

Z2

)

=
1 + q1q2

(1 − q2
1b

2)
(

1 −
q2
1

b2

)

(1 − q2
1)

(

1 − q2

q1

)(

1 −
q2
2

q2
1

)

+
1 − q2

1q
2
2

(1 − q1q2b2)
(

1 − q1q2

b2

)

(1 − q2
1)

(

1 − q2

q1

)(

1 − q1

q2

)

(1 − q2
2)

+
1 + q1q2

(1 − q2
2b

2)
(

1 −
q2
2

b2

)(

1 − q1

q2

)(

1 −
q2
1

q2
2

)

(1 − q2
2)

. (A.20)

A.2 C
2/Z3

Let us consider the orbifold geometry C
2/Z3 × C. The theory has N = 2 supersymme-

try with three vector multiplets in the adjoint representation and three bi-fundamental

hypermultiplets. In N = 1 notation, this transforms to nine chiral multiplets denoted by

φi, Xi,Yi with i = 1, 2, 3. (The charges are written in table 5.) The superpotential is

W = φ1(X1Y1 − Y3X3) + φ2(X2Y2 − Y1X1) + φ3(X3Y3 −Y2X2) (A.21)

The generating function for one D-brane is relatively easy to obtain once one makes

the observation that the moduli space is a complete intersection. The argument goes as
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field U(1)X U(1)Y B1 B2 charges

X1 1 0 1 0 t1b1

Y1 0 1 −1 0 t2/b1

X2 1 0 −1 1 t1b2/b1

Y2 0 1 1 −1 t2b1/b2

X3 1 0 0 −1 t1/b2

Y3 0 1 0 1 t2b2

Table 5: Global charges for the bi-fundamental fields of the quiver gauge theory living on the

D-brane probing the C
2/Z3 × C singularity.

follows. Excluding the adjoint fields, there are six fields in the quiver. Besides the two flavor

symmetries that are dual to isometries in the C
2 directions, there are also two baryonic

symmetries coming from the two Fayet-Iliopoulos terms which can be introduced for three

gauge groups. All together we count four symmetries leading to a four-dimensional moduli

space generated by six fields. Since there are only two F-term relations, X1Y1 = X2Y2 =

X3Y3, this manifold is a complete intersection.

This enables us to immediately write down the generating function,

g1

(

t1, t2; b1, b2;
C

2

Z3

)

=
(1−t1t2)

2

(1−t1b1)
(

1− t2
b1

)(

1− t1b2
b1

) (

1− t2b1
b2

) (

1− t1
b2

)

(1−t2b2)
(A.22)

where we have set the generator charges in the denominator according to table 5. The

numerator is obtained from the charges of the F-terms.

Alternatively, one arrives at the exact same result using localization and the auxiliary

GKZ polynomial ring. The latter leads to six two dimensional cones parametrized by B1

and B2. These cones correspond to the Weyl chambers of SU(3) depicted in figure 19. For

fixed baryonic charges, localization gives

g1,B1,B2(t1, t2; C
2/Z3) =

tB̃1+2B̃2
1

(1 − t31)
(

1 − t2
t21

) +
tB̃1
1 tB̃2

2
(

1 −
t21
t2

) (

1 −
t22
t1

) +
t2B̃1+B̃2
2

(

1 − t1
t22

)

(1 − t32)

where (B̃1, B̃2) is a lattice point in the fundamental chamber, and can be obtained by Weyl

reflection of (B1, B2). This is similar to the C
3/Z2 case, where the Weyl reflection boils

down to taking the absolute value of the baryonic charge, cf. (A.4).
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Figure 19: The six cones for C2/Z3 × C.

In detail, we have

g1,B1,B2

(

t1, t2;
C

2

Z3

)

=























































































































































t
B1+2B2
1

(1−t31)

„

1−
t2
t2
1

« +
t
B1
1 t

B2
2

„

1−
t2
1

t2

«„

1−
t2
2

t1

« +
t
2B1+B2
2

„

1−
t1
t2
2

«

(1−t32)
B1 ≥ 0, B2 ≥ 0

t
B1−B2
1

(1−t31)

„

1−
t2
t21

« +
t
B1+B2
1 t

−B2
2

„

1−
t21
t2

«„

1−
t22
t1

« +
t
2B1+B2
2

„

1−
t1
t22

«

(1−t32)
B1 ≥ 0 ≥ B2 ≥ −B1

t
B1−B2
1

(1−t31)

„

1−
t2
t2
1

« +
t
−B1−B2
1 t

B1
2

„

1−
t2
1

t2

«„

1−
t2
2

t1

« +
t
−B1−2B2
2

„

1−
t1
t2
2

«

(1−t32)
0 ≤ B1 ≤ −B2

t
−2B1−B2
1

(1−t31)

„

1−
t2
t21

« +
t
−B2
1 t

−B1
2

„

1−
t2
1

t2

«„

1−
t2
2

t1

« +
t
−B1−2B2
2

„

1−
t1
t22

«

(1−t32)
B1 ≤ 0, B2 ≤ 0

t
−2B1−B2
1

(1−t31)

„

1−
t2
t2
1

« +
t
B2
1 t

−B1−B2
2

„

1−
t21
t2

«„

1−
t22
t1

« +
t
−B1+B2
2

„

1−
t1
t2
2

«

(1−t32)
B1 ≤ 0 ≤ B2 ≤ −B1

t
2B1+B2
1

(1−t31)

„

1−
t2
t2
1

« +
t
−B1
1 t

B1+B2
2

„

1−
t2
1

t2

«„

1−
t2
2

t1

« +
t
−B1+B2
2

„

1−
t1
t2
2

«

(1−t32)
B2 ≥ −B1 ≥ 0

Now g1,B1,B2 can be summed up for B1 and B2, giving precisely the result of (A.22).

A.3 C
2/Zn

For sake of completeness, we derive here the general structure of the N = 1 generating

function for C
2/Zn by making use of brane tilings [33, 34]. It is easy to see that the

polynomial ring is a complete intersection and therefore the N = 1 generating function is

easy to compute. This could also be computed on a case-by-case basis with Hilbert series

in Macaulay2.
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Figure 20: Tiling for C
2/Zn. The blue adjoint fields give nontrivial constraints.

The brane tiling for the geometry is shown in figure 20. The edges are in one-to-one

correspondence with the 2n bifundamental and n adjoint fields in the theory. Black and

white vertices give terms in the superpotential. Gauge groups are labeled by the faces in

the tiling.

F-terms for the bifundamental fields set the blue adjoint fields equal to each other. On

the other hand, F-terms for the adjoint fields give n − 1 constraints on the bifundamental

fields. For instance,

AB = CD (A.23)

where A,B,C and D are indicated in figure 20. The baryonic charges of these equations

are zero. Flavor charges are assign t1(t2) for a field that goes southwest (southeast) in

figure 20, respectively. For example, A and D are assigned a chemical potential t1 and B

and C are assigned a chemical potential t2. Hence, each F-term carries weight t1t2, leading

to a (1 − t1t2) factor in the numerator of the generating function. There are n − 1 such

relations. The general formula for C
2/Zn,

g1(t1, t2, b1, . . . , bn−1; C
2/Zn) =

(1 − t1t2)
n−1

∏n
i=1

(

1 − t1b
~Bi

) (

1 − t2b−
~Bi

)

where b
~B ≡ bB1

1 bB2
2 · · · b

Bn−1

n−1 . Here the assignment of baryonic charges in n vectors ~Bi

which live in n−1 dimensions can be chosen with any convenient basis which is isomorphic

to the simple roots of the An−1 Lie algebra. A possible choice for these n vectors can be

a straightforward generalization of table 5, ~B1 = (1, 0, 0 . . . 0), ~B2 = (−1, 1, 0 . . . 0), ~B3 =

(0,−1, 1, 0 . . . 0), . . . , ~Bn−1 = (0 . . . 0,−1, 1), ~Bn = (0 . . . 0,−1).

B. A look at the shiver

In order to understand anomalous baryonic charges, we consider the mirror Calabi-Yau.

– 56 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
2

C C

B

B

B

C

A

u

u

u

u

v

v

v

v

w

w

w
w

Figure 21: Shiver for C3/Z3.

The geometric description of the mirror [75 – 77] consists of a double fibration over W ∈ C,

W = P (w, z) ≡
∑

cp,qw
pzq

W = uv

where w, z ∈ C
∗ and u, v ∈ C. P (w, z) is the Newton polynomial of the toric diagram and

describes a punctured Riemann surface fiber over the W plane. The genus of this surface

equals I, i. e. the number of internal points in the toric diagram.

According to the mirror conjecture, the gauge theory arises from D6-branes wrapping

three-cycles. These three-cycles intersect over W = 0, and open strings at such intersection

points give chiral bifundamental matter fields [78]. The three-cycles wrap one-cycles in the

Riemann-surface fiber at W = 0. They determine a mirror tiling which we will call here

the “shiver”. This graph is related to the brane tiling (or dimer graph) by the so-called

“antimap”. The detailed description can be found in [37].

The brane tiling lives on a torus and the two nontrivial cycles are related to the flavor

charges. The shiver lives on the Riemann surface where the 2I nontrivial cycles are related

to the anomalous charges. We have the analogy

flavor charges : brane tiling :: anomalous charges : shiver

In the following, we study this analogy through examples.

B.1 Anomalous charges of C
3/Z3

Let us consider the shiver of the C
3/Z3 theory which is given in figure 21. The edges

are in one-to-one correspondence with the arrows in the quiver. The u, v and w represent

the three types of fields which differ in their (torsion) D1-charges. It follows that their

anomalous U(1) charges are also different,

u = a1a2 v =
a2

a1
w =

1

a2
2

. (B.1)

We see that trivial loops along the green arrows have vanishing charges. The two

nontrivial loops have charges 1
a2
1

and 1
a1a3

2
, respectively. Therefore, anomalous charges

distinguish between the two cycles and in this sense they are similar to the flavor charges

in the tiling.
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Figure 22: (i) Shiver for F0. (ii) Shiver for dP1.

B.2 Anomalous charges of F0

The assignment of anomalous charges is shown in figure 7. In the shiver (figure 22), trivial

loops along the green arrows again have vanishing charges. The two nontrivial loops have

charges a2
1 and a2

2, respectively.

B.3 Anomalous charges of dP1

The assignment of anomalous charges is shown in figure 11. In the shiver (figure 22), the

two nontrivial loops have charges
a2
2

a1
and 1

a1a2
2
, respectively.

C. List of notations

N number of D-branes

G number of SU(N) gauge group factors in the theory

F number of fields (chiral bi-fundamental multiplets) in the theory

ti chemical potentials (weights)

x, y, qi flavor charge weights

bi non-anomalous baryonic weights

ai anomalous baryonic weights

R R-charge

Bi, B
′ baryonic charges from the gauge theory

β, β′ baryonic charges from the geometry

Ai anomalous baryonic charges

A,B,C, . . . fields in the gauge theory

R polynomial ring

I,J ideals for a polynomial ring

a, b, c, . . . generators of the auxiliary GKZ ring

m(B1, B2, . . .) multiplicities in the GKZ fan
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I number of internal (integral) points in toric diagram

d number of external points in toric diagram

Di toric divisors assigned to the integral points in the toric diagram

xi homogeneous coordinates

gN ({ti};CY ) baryonic generating function for N D-branes probing CY

PEν [ · ] plethystic exponential with weight ν for the number of D-branes

Zβ,β′({ti};CY ) partition function from the geometry

C(β) hollow polygon in the fiber over the GKZ lattice
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